Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/6*3+1/6*9+1/9*12+........+1/30*33
=(1/3-1/6)+(1/6-1/9)+(1/9-1/12)+........+(1/30-1/33)
=1/3-1/6+1/6-1/9+1/9-1/12+........+1/30-1/33
=1/3-1/33
=10/33
nho k cho mink nha
CHUC BAN HOC GIOI !
Gợi ý: 18 = 3.6
54 = 6.9
108 = 9.12
.............
990 = 30.33
Gấp 3 lần R rồi dùng sai phân hữu hạn.
Tự làm tiếp nhé!!!
F = 1/3.6 + 1/6.9 + 1/9.12 + ... + 1/30.33
F = 1/3.(1.3-1/6+1/6-1/9+1/9-1/12+...+1/30-1/33)
F = 1/3.(1/3-1/33)
F = 1/3.10/33
F = 10/99
F = 1/ 3.6 + 1/ 6.9 + 1/ 9.12 +...+1/ 30.33
F = 1/3 . ( 1/3 -1/6 + 1/6 - 1/9 + 1/9 - 1/12 + ... + 1/30 - 1/33 )
F = 1/3 . ( 1/3 - 1/33 )
F = 1/3 . 10/ 33
F = 10 /99
\(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{9}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(F=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(F=\frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(F=\frac{1}{9}\left(1-\frac{1}{11}\right)\)
\(F=\frac{1}{9}.\frac{10}{11}=\frac{10}{99}\)
Ta có: \(A=1-2+3-4+5-6+7-8+9\)
\(=(1+9)-(2+8)+(3+7)-(4+6)+5\)
\(=10-10+10-10+5\)
\(=5\)
Vậy \(A=5\)
B = 12 - 14 + 16 - 18 + ... + 2008 - 2010
B = -2 + (-2)+ (-2)+ (-2) + ...+ (-2)
B = -2 . 100
B = -200
lx + 12l + 21 = (-7).(-8)
lx + 12l + 21 = 56
lx + 12l = 56 - 21
lx + 12l = 35
Suy ra x + 12 = 35 hay x + 12 = -35
TH1:
x + 12 = 35
x = 35 - 12
x = 23
TH2:
x + 12 = -35
x = -35 - 12
x = -35 + (-12)
x = -47
k mk nha bn,ủng hộ mk nha
a) \(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(3F=\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\)
\(3F=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{30}-\frac{1}{33}\)
\(3F=\frac{1}{3}-\frac{1}{33}\)
\(F=\frac{1}{3}.\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}.\frac{1}{3}-\frac{1}{3}.\frac{1}{33}=\frac{1}{9}-\frac{1}{99}=\frac{11}{99}-\frac{1}{99}=\frac{10}{99}\)
b) \(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(A=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(A=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(A=7.\left(\frac{1}{10}-\frac{1}{70}\right)=7.\left(\frac{7}{70}-\frac{1}{70}\right)=7.\frac{6}{70}\)
\(A=\frac{7.6}{70}=\frac{1.6}{10}=\frac{1.3}{5}=\frac{3}{5}\)
a, \(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{3}\cdot\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)
\(F=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}\cdot\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(F=\frac{1}{3}-\frac{10}{33}\)
\(F=\frac{10}{99}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3\cdot6}+\frac{1}{6\cdot9}+\frac{1}{9\cdot12}+...+\frac{1}{30\cdot33}\)
\(=\frac{1}{3}\left(\frac{3}{3\cdot6}+\frac{3}{6\cdot9}+\frac{3}{9\cdot12}+...+\frac{3}{30\cdot33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\cdot\frac{10}{33}=\frac{10}{99}\)
\(\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(=\frac{1}{3.6}+\frac{1}{6.9}+\frac{1}{9.12}+...+\frac{1}{30.33}\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\right)\)
\(=\frac{1}{3}\left(\frac{1}{3}-\frac{1}{33}\right)\)
\(=\frac{1}{3}.\frac{10}{33}\)
\(=\frac{10}{99}\)