Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=1+3^1+3^2+3^3+...+3^{199}+3^{200}\)
\(\Rightarrow3A=3^1+3^2+3^3+3^4+...+3^{201}\)
\(\Rightarrow3A-A=\left(3^1+3^2+3^3+3^4+...+3^{201}\right)-\left(1+3^1+3^2+3^3+...+3^{200}\right)\)
\(\Rightarrow2A=3^{201}-1\)
\(\Rightarrow A=\frac{3^{201}-1}{2}< 3^{201}-1< 3^{201}=B\)
Vậy A < B
1.
a) \(x^3-\frac{1}{2}=\left(-\frac{3}{8}\right)\)
\(\Rightarrow x^3=\left(-\frac{3}{8}\right)+\frac{1}{2}\)
\(\Rightarrow x^3=\frac{1}{8}\)
\(\Rightarrow x^3=\left(\frac{1}{2}\right)^3\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}.\)
b) \(\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=\left(-2\right)+1\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=\left(-1\right):2\)
\(\Rightarrow x=-\frac{1}{2}\)
Vậy \(x=-\frac{1}{2}.\)
c) \(17+3^x=98\)
\(\Rightarrow3^x=98-17\)
\(\Rightarrow3^x=81\)
\(\Rightarrow3^x=3^4\)
\(\Rightarrow x=4\)
Vậy \(x=4.\)
Chúc bạn học tốt!
Mình cảm mơn ^^
sẵn tiện có thể giúp mình cách tính nhân chia của tỉ lệ thuận và nghịch được không? Mình hơi rối chỗ này á
1, \(A=2.3^4+2^3=2\left(3^4+2^2\right)=2.85=170\)
2,\(=>9A=3^{13}+3^{15}+3^{17}+...+3^{25}\)
\(=>9A-A=3^{25}-3^{11}\)
\(=>A=\dfrac{3^{25}-3^{11}}{8}\)
Ta thấy : \(3^{25}=3.3^{4.6}=3\times.........1=...........3\)
Lại có: \(3^{11}=3^3.3^{4.2}=27\times.........1=.......7\)
=> \(=>3^{25}-3^{11}=....3-......7=.....6\)
Ta có: \(A=\dfrac{.............6}{8}=>A=.........2;A=.....7\)
Mà số chia hết cho 5 có tận cùng là 0 ; 5 nên => A không chia hết cho 5;
3,\(B=\dfrac{2017^{17}\left(2017^{2000}-1\right)}{2017^{2016}.2017^{2002}}\)
\(=>B=\dfrac{2017^{2000}-1}{2017^{2001}}\)
CHÚC BẠN HK TỐT....