Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)Ta có: Δ= m2-4.1.(2m-4)=m2-8m+16=(m-4)2≥0
⇒ phương trình luôn có nghiệm với mọi giá trị của m
b)Theo hệ thức Viet ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-m}{1}=-m\\x_1x_2=\dfrac{2m-4}{1}=2m-4\end{matrix}\right.\)
Ta có: x12+x22 = 4
⇔ (x1+x2)2-2x1x2=4
⇒ m2-2.(2m-4)=4
⇔ m2-4m+8=4
⇔ m2-4m+4=0
⇔ (m-2)2=0 ⇔ m=2
1: Giả sử \(2\ge a\ge b\ge c\ge1\).
BĐT cần cm tương đương \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\).
Ta có \(\dfrac{\left(a-b\right)\left(b-c\right)}{bc}\ge0\Leftrightarrow\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\);
\(\dfrac{\left(a-b\right)\left(b-c\right)}{ab}\ge0\Leftrightarrow1+\dfrac{c}{a}\ge\dfrac{c}{b}+\dfrac{b}{a}\).
Từ đó ta chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\Leftrightarrow\left(a-2c\right)\left(2a-c\right)\le0\).
Dễ thấy \(a\le2\le2c;2a\ge2\ge c\) nên ta có đpcm.
Đẳng thức xảy ra khi chẳng hạn a = 2; b = c = 1.
Bài 2.
Ta có:a2+b2+c2+2abc+1≥2(ab+bc+ca)
⇔ (a2-2ab+b2)+(c2-2c+1)+(2c+2abc-2bc-2ca)≥0
⇔ (a-b)2+(c-1)2+2c(a-1)(b-1)≥0
Vì a,b,c≥0 ⇒ 2c(a-1)(b-1)≥0
Dấu "=" xảy ra ⇔ a=b=c=1
C25: b5: Sử dụng kĩ thuật Côsi ngược dấu:
Ta có: \(\dfrac{1}{2bc^2+1}=1-\dfrac{2bc^2}{2bc^2+1}\ge1-\dfrac{2bc^2}{3\sqrt[3]{b^2c^4}}=1-\dfrac{2\sqrt[3]{bc^2}}{3}\)
Cmtt ta được: \(\dfrac{1}{2ca^2+1}\ge1-\dfrac{2\sqrt[3]{ca^2}}{3};\dfrac{1}{2ab^2+1}\ge1-\dfrac{2\sqrt[3]{ab^2}}{3}\)
\(\Rightarrow VT\ge1-\dfrac{2\sqrt[3]{bc^2}}{3}+1-\dfrac{2\sqrt[3]{ca^2}}{3}+1-\dfrac{2\sqrt[3]{ab^2}}{3}=3-2\left(\dfrac{\sqrt[3]{bc^2}+\sqrt[3]{ca^2}+\sqrt[3]{ab^2}}{3}\right)\)
Ta có: Theo bđt Côsi:
\(\sqrt[3]{bc^2}=\sqrt[3]{b.c.c}\le\dfrac{b+c+c}{3}=\dfrac{b+2c}{3}\)
\(\sqrt[3]{ca^2}=\sqrt[3]{c.a.a}\le\dfrac{c+a+a}{3}=\dfrac{c+2a}{3}\)
\(\sqrt[3]{ab^2}=\sqrt[3]{a.b.b}\le\dfrac{a+b+c}{3}=\dfrac{a+2b}{3}\)
\(\Rightarrow\sqrt[3]{bc^2}+\sqrt[3]{ca^2}+\sqrt[3]{ab^2}\le\dfrac{b+2c+c+2a+a+2b}{3}=a+b+c=3\)
\(\Rightarrow3-2\left(\dfrac{\sqrt[3]{bc^2}+\sqrt[3]{ca^2}+\sqrt[3]{ab^2}}{3}\right)=1\)
\(\Rightarrow VT\ge1\)
Dấu ''='' xảy ra khi a=b=c=1
Cơ hội kiếm thưởng đây! Với quỹ cộng đồng hoc24 lên tới hơn 450.000đ đến hiện tại, giải thưởng giải Nhất đã đạt ở mức 500.000đ!
Nếu các bạn muốn giúp đỡ cộng đồng qua việc đóng góp giải thưởng, hãy chuyển ngay COIN tới tài khoản này nha :>
Xin cảm ơn các nhà hảo tâm:
- Nguyễn Trần Thành Đạt: 400 COIN.
- Sad Boy: 80 COIN.
nhưng không có đt
Thì dùng máy tính cũng được mà :D