K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC có AB<AC<BC

mà \(\widehat{ACB};\widehat{ABC};\widehat{BAC}\) lần lượt là góc đối diện của các cạnh AB,AC,BC

nên \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\)

b: Xét ΔABH vuông tại H và ΔKIH vuông tại H có

HA=HK

HB=HI

Do đó: ΔABH=ΔKIH

c: Xét ΔIAK có

IH là đường cao

IH là đường trung tuyến

Do đó: ΔIAK cân tại I

Ta có: ΔIAK cân tại I

mà IB là đường cao

nên IB là phân giác của góc AIK

d: Ta có: IA=IK

IA=ID

Do đó: IK=ID=DA/2

Ta có: ID=IA

I nằm giữa D và A

Do đó: I là trung điểm của DA

Xét ΔDKA có

KI là đường trung tuyến

\(KI=\dfrac{DA}{2}\)

Do đó: ΔKDA vuông tại K

17 tháng 5 2022

\(120^o\)

17 tháng 5 2022

nêu cách làm đc ko ah :((? 

a: để y>0 thì 2a-1<0

hay a<1/2

b: Để y<0 thì 2a-1>0

hay a>1/2

15 tháng 5 2022

c) Để y ko là số dương của ko là số âm thì:

\(y=\dfrac{2a-1}{-3}=0\Rightarrow2a-1=0\Rightarrow a=\dfrac{1}{2}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

=>x+1=0

hay x=-1

25 tháng 5 2022

\(\Leftrightarrow\left(x+1\right).\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)=\left(x+1\right)\left(\dfrac{1}{13}+\dfrac{1}{14}\right)\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)

mà \(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\ne0\)

\(=>x+1=0\Leftrightarrow x=-1\)

17 tháng 3 2022

Lx

17 tháng 3 2022

cái j vậy q như

10 tháng 3 2022

e) thu gọn : -\(\dfrac{4b^{14}c^5a^{17}}{3}\)

Bậc : 36

phần biến : \(a^{17}b^{14}c^5\)

10 tháng 3 2022

f) thu gọn : \(\dfrac{a^{12}b^9}{256}\)

bậc : 21

phần biến : \(a^{12}b^9\)

TH1 : \(x< -2020\) 

<=> | x + 1 | + | x + 2 | + | x + 2020 | = - ( x + 1 ) - ( x + 2 ) - ( x + 2020 ) = 4x

<=> -3x - 2023 = 4x <=> -7x = 2023 <=> x = -289

TH2 : \(-2020\le x< -2\)

<=> | x + 1 |  + | x + 2 | + | x + 2020 | = - ( x + 1 ) - ( x + 2 ) + x + 2020 = 4x

<=> -x + 2017 = 4x 

<=> -5x = -2017 <=> x = 2017/5   ( = 403,4 )

TH3 : \(-2\le x< -1\)

<=> | x + 1 | + | x + 2 | + | x + 2020 | = - ( x + 1 ) + x + 2 + x + 2020 = 4x 

<=> x + 2021 = 4x <=> -3x = -2021 <=> x = 2021/3 

TH4 : \(x>-1\)

<=> | x + 1 | + | x + 2 | + | x + 2020 | = x + 1 + x + 2 + x + 2020 = 4x

<=> 3x + 2023 = 4x 

<=> -x = -2023 <=> x = 2023 

Vậy...

22 tháng 4 2023

TH1: x ≥ 0

Khi đó \(\left|x+1\right|+\left|x+2\right|+\left|x+2020\right|=x+1+x+2+x+2020\)

                                                           \(=3x+2023=4x\)

Suy ra \(4x-3x=x=2023\) (thỏa mãn điều kiện)

TH2: x < 0

Khi đó 4x < 0 hay vế phải luôn là một số âm. Tuy nhiên vế trái luôn luôn có giá trị lớn hơn 0 nên luôn là 0 hoặc là một số dương, suy ra vô lí.

Tóm lại, x = 2023.

4 tháng 4 2022

Áp dụng tính chất dãy tỉ số bằng nhau:\(\dfrac{\left(5z-3y\right)+\left(3x-2z\right)+\left(2y-5x\right)}{2+5+3}\)

=\(\dfrac{\left(3x-5x\right)+\left(-3y+2y\right)+\left(5z-2z\right)}{2+5+3}\)

=\(\dfrac{-2x-y+3z}{2+5+3}\)(???!!!!)

=\(\dfrac{-2x}{2}=\dfrac{-y}{5}=\dfrac{3z}{3}\)

=\(\dfrac{2}{-2x}=\dfrac{5}{-y}=\dfrac{3}{3z}\)

tớ xin chịu trận vì ko chứng minh được :(((

nó lại ra như thế này

4 tháng 4 2022

😅😅😅

15 tháng 3 2022

b, Thay x = 1 ; y = -2 ta được 

\(A=16.4+2+2016=2082\)