\(\le\) x \(\le\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

\(a.\) 

\(\text{*)}\) Áp dụng bđt  \(AM-GM\)  cho hai số thực dương  \(x,y,\)  ta có:

\(x+y\ge2\sqrt{xy}=2\)  (do  \(xy=1\)  )

\(\Rightarrow\)  \(3\left(x+y\right)\ge6\)

nên  \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)

\(\Rightarrow\)  \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)

\(\text{*)}\)  Tiếp tục áp dụng bđt  \(AM-GM\)  cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\)  ta có:

\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)

Do đó,  \(D\ge6+5=11\)

Dấu  \("="\)  xảy ra khi  \(x=y=1\)

Vậy,  \(D_{min}=11\)  \(\Leftrightarrow\)  \(x=y=1\)

\(b.\) Bạn tìm điểm rơi rồi báo lại đây

9 tháng 8 2016

b

\(8\sqrt{x-1}=4.2.\sqrt{x-1}.1\le4.\left(x-1+1\right)=4x\)

\(x.\sqrt{16-3x^2}\le\frac{x^2+16-3x^2}{2}=8-x^2\)

\(\Rightarrow y\le4x-x^2+8=-\left(x-2\right)^2+12\le12\)

Dấu bằng xảy ra khi \(x=2\)

NV
15 tháng 5 2020

\(A\ge\frac{\left(x+y+z\right)^2}{3}+\frac{9}{x+y+z}=\frac{\left(x+y+z\right)^2}{3}+\frac{9}{8\left(x+y+z\right)}+\frac{9}{8\left(x+y+z\right)}+\frac{27}{4\left(x+y+z\right)}\)

\(A\ge3\sqrt[3]{\frac{81\left(x+y+z\right)^2}{3.64\left(x+y+z\right)\left(x+y+z\right)}}+\frac{27}{4.\frac{3}{2}}=\frac{27}{4}\)

\(A_{min}=\frac{27}{4}\) khi \(x=y=z=\frac{1}{2}\)

12 tháng 3 2017

Sai đề rồi nha bạn! Điều kiện:  \(x^2+y^3\ge x^3+y^4\)

Sử dụng bất đẳng thức  \(C-S,\)  ta có:

\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)

\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)

\(\Rightarrow\)  \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\)  \(\Leftrightarrow\)  \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)

Lại có:   \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)

\(\Rightarrow\)  \(x^2+y^2\le x+y\)  \(\left(2\right)\)

Mặt khác, từ  \(\left(2\right)\)  với lưu ý rằng  \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và  \(x,y\in R^+\) , ta thu được:

 \(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\)  \(x^2+y^2\le2\)   \(\left(3\right)\)

nên do đó,  \(\left(i\right)\)  suy ra \(x+y\le\sqrt{2.2}=2\)  \(\left(4\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)  và  \(\left(4\right)\)  ta có đpcm

13 tháng 6 2017

bài này điểm rơi hơi thộn, mò được ngay thì hơi khó :))

Áp dụng BĐT AM-GM ta có:

\(b^2\left(c-b\right)=\frac{1}{2}\cdot b\cdot b\left(2c-2b\right)\le\frac{1}{2}\left(\frac{b+b-2c-2b}{3}\right)^3=\frac{4c^3}{27}\)

Và \(a^2\left(b-c\right)\le0\). Khi đó 

\(Q\le\frac{4c^3}{27}+c^2\left(1-c\right)=c^2-\frac{23}{27}c^3=c^2\left(1-\frac{23}{27}\cdot c\right)\)

\(=\frac{54^2}{23^2}c^2\left(1-\frac{23}{27}c\right)\le\frac{1}{3^3}\cdot\frac{54^2}{23^2}=\frac{108}{529}\)

Đẳng thức xảy ra khi \(a=0;b=\frac{12}{23};c=\frac{18}{23}\)

13 tháng 6 2017

à đề là GTLN mới đúng nhé :))

15 tháng 6 2017

\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)

ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)

\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)

Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị 

15 tháng 6 2017

trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))