Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8: Ta có: \(\sqrt{6+2\sqrt{5}}-\dfrac{\sqrt{15}-\sqrt{3}}{\sqrt{3}}\)
\(=\sqrt{5}+1-\sqrt{5}+1\)
=2
10: =>1/2x=3/4 và x+y=2
=>x=3/4*2=3/2 và y=1/2
11:=>4x+5y=3 và 4x-12y=20
=>17y=-17 và x-3y=5
=>y=-1 và x=3y+5=-3+5=2
12: =>7x-2y=1 và 6x+2y=12
=>13x=13 và 3x+y=6
=>x=1 và y=3
13:=>2/x=1 và 1/x-1/y=1/5
=>x=2 và 1/y=1/2-1/5=3/10
=>y=10/3 và x=2
14: =>12/x-16/y=8 và 12/x-15/y=9
=>-1/y=-1 và 4/x-5/y=3
=>y=1 và 4/x=3+5=8
=>x=1/2 và y=1
a: Khi m=3 thì (1): x^2-6x+4=0
=>x^2-6x+9-5=0
=>(x-3)^2=5
=>\(x=3\pm\sqrt{5}\)
a: MA=MC
OA=OC
=>OM là trung trực của AC
=>OM vuông góc AC
Vì góc AHO+góc AMO=180 độ
=>AHOM là tứ giác nội tiếp
Bài 9:
a: Xét tứ giác OPMN có
góc OPM+góc ONM=180 độ
=>OPMN là tứ giác nội tiếp
b: \(MN=\sqrt{10^2-6^2}=8\left(cm\right)\)
c: ΔOAB cân tại O
mà OH là đường trung tuyến
nên OH vuông góc AB
Xét tứ giác OHNM có
góc OHM=goc ONM=90 độ
=>OHNM là tứ giác nội tiép
=>góc MHN=góc MON
1.2
Đề câu này bị lỗi đoạn cuối, chỗ nằm giữa \(-3x+...+2014\) là gì ấy nhỉ? \(2^2\) đúng không?
Đây là giải theo cách dịch đề bài:
\(A=5x^5-15x^4+14x^3-12x^2-3x+2^2+2014\)
Khi đó:
\(x=\sqrt[3]{2}+1\Rightarrow x-1=\sqrt[3]{2}\)
\(\Rightarrow\left(x-1\right)^3=2\)
\(\Rightarrow x^3-3x^2+3x-1=2\)
\(\Rightarrow x^3-3x^2+3x-3=0\)
Ta có:
\(A=5x^2\left(x^3-3x^2+3x-3\right)-x^3+3x^2-3x+4+2014\)
\(=5x^2.0-\left(x^3-3x^2+3x-3\right)+2015\)
\(=-0+2015=2015\)
Còn nếu đề bài là:
\(A=\left(5x^5-15x^4+14x^3-12x^2-3x+2\right)^2+2014\)
Thì kết quả là: \(A=1+2014=2015\)
2.3
Lại 1 câu đề lỗi nữa, biểu thức của pt là:
\(x^2+\left(2m-2\right)x-m^2=0\)
hay \(x^2+2m-2x-m^2=0\)?
Người đánh đề bài này rất ẩu tả, vô trách nhiệm
Coi như đề bài là: \(x^2+\left(2m-2\right)x-m^2=0\)
Ta có:
\(\Delta'=\left(m-1\right)^2+m^2=\dfrac{1}{2}\left(2m-1\right)^2+\dfrac{1}{2}>0\) ; \(\forall m\)
Pt luôn có 2 nghiệm với mọi m
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m^2\end{matrix}\right.\)
\(\left|x_1-x_2\right|=6\Leftrightarrow\left(x_1-x_2\right)^2=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=36\)
\(\Leftrightarrow\left(2m-2\right)^2+4m^2=36\)
\(\Leftrightarrow m^2-m-4=0\Rightarrow m=\dfrac{1\pm\sqrt{17}}{2}\)
(1)=x^3-y^3=7
<=>(x-y)(x^2+y^2+xy)=7
<=>(X-y)^3+3xy(x-y)=7
thay(2)vào
=>(x-y)^3+3.2=7
=>x-y=1
thay vào (2)=>=xy=2
=>y^2+y-2=0
___y=1 &-2
=>x=2&-1
(1)=x^3-y^3=7
<=>(x-y)(x^2+y^2+xy)=7
<=>(X-y)^3+3xy(x-y)=7
thay(2)vào
=>(x-y)^3+3.2=7
=>x-y=1
thay vào (2)=>=xy=2
=>y^2+y-2=0
y=1 &-2
=>x=2&-1
\(\Delta=\left(-2m\right)^2-4\left(2m-10\right)\)
=4m^2-8m+40
=4m^2-8m+4+36=(2m-2)^2+36>0
=>(1) luôn có hai nghiệm phân biệt
x1+x2=2m và 2x1+x2=-4
=>-x1=2m+4 và x1+x2=2m
=>x1=-2m-4 và x2=2m+2m+4=4m+4
x1x2=2m-10
=>(-2m-4)(4m+4)=2m-10
=>-8(m-2)(m+1)=2(m-5)
=>-4(m-2)(m+1)=(m-5)
=>-4(m^2-m-2)=m-5
=>-4m^2+4m+8-m+5=0
=>-4m^2+3m+13=0
=>\(m=\dfrac{3\pm\sqrt{217}}{8}\)