K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

vd về bữa ăn hợp lý trg gđ là: bữa ăn có đầy đủ các chất dinh dưỡng. có đủ các chất: chất béo, chất khoáng, chất đạm. chất đường bột.

giải thích: vì bữa ăn hợp lí là có đầy đủ các chất đã nêu. vậy ms đầy đủ các chất dinh dưỡng chogd, mỗi thành viên đều bổ sung đày đủ các chất.

câu tl này chỉ theo những j mk đã hx nhé

26 tháng 4 2017

là bữa ăn có đầy đủ các chất dinh dưỡng

câu 1     

* Nguyên tắc tổ chức bữa ăn hợp lí trong gia đình là 

+ phù hợp với nhu cầu các thành viên trong gia đình

+ phù hợp với điều kiện tài chính

+ phù hợp với sự cân bằng chất dinh dưỡng 

+ phải thay đổi món ăn

* Quy trình tổ chức bữa ăn là

+ xây dựng thực đơn

+ lựa chọn thực phẩm cho thục đơn

+ chế biến món ăn

+ bày bàn và thu dọn sau khi ăn

câu 2  

  * Bữa ăn hợp lí là bữa ăn có sự phối hợp các loại thực phẩm với đầy đủ các chất dinh dưỡng cần thiết theo tỉ lệ thích hợp để cung cấp cho nhu cầu của cơ thể về năng lượng và về các chất dinh dưỡng 

* Việc phân chia các nhóm thức ăn giúp cho con người tổ chức bữa ăn mua đủ các loại thực phẩm cần thiết và thay đổi món ăn cho đỡ nhàm chán , hợp khẩu vị , thời tiết  ,..... mà vẫn đảm bảo cân bẵng dinh dưỡng theo yêu cầu của bữa ăn . Mỗi ngày trong khẩu phần ăn nên chọn đủ thức  ăn 4 nhóm để  bổ sung cho nhau ề mặt dinh dưỡng 

3 tháng 5 2016

2)quan trọng 

3)tiền / hiện vật/ công sức lao động 

5) mắc bệnh 

6)thực vật 

7)béo phì 

12 tháng 5 2016

1.     Vitamin…rất……dễ tan trong nước và vitamin…………rất…… dễ tan trong chất béo.

2.     Bữa ăn sáng cần được xem là một trong ba bữa ăn…quan trọng……trong ngày.

3.     Thu nhập của gia đình là tổng các khoản thu bằng ......tiền......... hoặc bằng .hiện vật..................... do ...........công sức lao động..........của các thành viên trong gia đình tạo ra.

4.     Đường và ………... là loại thực phẩm có chứa chất đường bột.

5.     Ăn quá nhiều thức ăn có chứa chất đường bột có thể làm cho  cơ thể chúng ta….....mắc bệnh...

6.     Dầu ăn có thể lấy từ hai nguồn động vật và ……thực vật…...

7.     Có quá nhiều mỡ trong cơ thể có thể dẫn đến bệnh…béo phì……...

19 tháng 4 2016

1. Nhu cầu các thành viên trong gia đình

Chọn những thực phẩm có thể đáp ứng được nhu cầu khác nhau của các thành viên trong gia đình, căn cứ vào tuổi tác, giới tính, tình trạng thể chất và nghề nghiệp của họ.

Ví dụ:

- Trẻ em đang lớn cần ăn nhiều loại thực phẩm để xây dựng và phát triển cơ thể.

- Người lớn đang làm việc, lao động chân tay cần được cung cấp các thực phẩm năng lượng.

- Phụ nữ có thai cần có các thực phẩm giàu chất đạm, chất vôi và chất sắt.

2. Điều kiện tài chính

Cần cân nhắc về số tiền hiện có thể đi chợ, một bữa ăn đủ chất dinh dưỡng không cần phải đắt tiền mới có được.

3. Sự cân bằng chất dinh dưỡng được thể hiện qua việc chọn mua thực phẩm phù hợp.

Cần chọn đủ thực phẩm của 4 nhóm thức ăn để tạo thành một bữa ăn hoàn chỉnh, cân bằng dinh dưỡng.

Chức năng những thức ăn của các nhóm thực phẩm, có:

- Xây dựng và tu bổ các tế bào (các chất đạm).

- Cung cấp năng lượng và nhiệt lượng (các chất đường và chất béo).

- Bảo vệ và điều hòa mọi hoạt động của cơ thể (các sinh tố và chất khoáng).

4. Sự thay đổi món ăn và hình thức trình bày

Thay đổi thực đơn cho gia đình mỗi ngày để tránh nhàm chán.

Thay đổi các phương pháp chế biến có món ăn ngon miệng.

Thay đổi hình thức trình bày và màu sắc của món ăn để bữa ăn thêm phần hấp dẫn.

Trong một bữa ăn, không nên có thêm món ăn cùng loại thực phẩm hoặc cùng phương pháp chế biến với món chính đã có sẵn.

Ví dụ: Đã có món cá kho thì không cần phải làm thêm món cá hấp.

Màu sắc, hình thức và hương vị đóng vai trò quan trọng trong việc tạo sự hấp dẫn và ngon miệng cho bữa ăn. Những lát dưa leo, cà chua, hành phi, hành lá xắt, tỉa, cần tây, rau ngò, ớt xắt, tỉa… sẽ tăng thêm màu sắc cho đĩa thức ăn. Các món gia vị cũng góp phần tăng thêm giá trị dinh dưỡng cho món ăn.

5. Chế độ ăn uống cho từng đối tượng

Nhu cầu chất đạm cao hơn người lớn gấp 3 – 4 lần

Đạm động vật nên chiếm ít nhất 60% tổng số đạm cần thiết.

Nên dùng chất béo thực vật.

Trẻ dễ hấp thụ chất béo của trứng, sữa, dầu cá, dầu thực vật hơn chất béo của mỡ lợn.

Chất đường, vôi, sắt, lân… cần cho sự cấu tạo xương răng, hồng huyết cầu.

Nên chọn thức ăn dễ tiêu.

Cần tập cho trẻ có thói quen ăn nhiều rau quả.

Tránh cho trẻ các loại thức uống có nhiều chất kích thích như trà, cà phê, rượu hoặc thức ăn có nhiều gia vị cay nồng… đồng thời, những thức ăn dai, cứng cũng không thích hợp với sức nhai và sự tiêu hóa của trẻ.

Tỷ lệ năng lượng cân đối như sau: 4 bữa/ngày

- Bữa sáng = 25% tổng số năng lượng

- Bữa trưa = 40% tổng số năng lượng

- Bữa chiều = 10% tổng số năng lượng

- Bữa tối = 25% tổng số năng lượng

Người lớn (đang tuổi lao động)

Cường độ tiêu hao năng lượng tùy thuộc vào quá trình lao động và tính chất công việc. Do đó, chế độ ăn uống cần phải đặc biệt quan tâm mới đáp ứng được nhu cầu tái sản xuất.

Người lao động nhiều cần năng lượng chất đạm cao hơn người nhàn rỗi.

Lao động càng nặng nhọc, nhu cầu về năng lượng càng cao.

Chế độ ăn uống thừa năng lượng, gây cho cơ thể bị béo phì làm ảnh hưởng không tốt đến tim mạch (nhồi máu cơ tim, rối loạn tim mạch…)

Đối với những người lao động trí óc, hoặc ít hoạt động nên hạn chế sử dụng thức ăn có nhiều chất béo và chất đường bột.

Nhu cầu về sinh tố và chất đạm thì dù ở lứa tuổi nào cũng phải đảm bảo đủ trong khẩu phần.

Tỷ lệ năng lượng cân đối như sau: 2 chế độ

Chế độ 4 bữa/ngày (dành cho nông dân hoặc những người làm việc từ sáng sớm):

- Bữa sáng 1 = 10% tổng số năng lượng

- Bữa sáng 2 = 25% tổng số năng lượng

- Bữa trưa = 40% tổng số năng lượng

- Bữa tối = 25% tổng số năng lượng

Chế độ ăn 3 bữa/ngày:

- Bữa sáng = 30% tổng số năng lượng

- Bữa trưa = 45% tổng số năng lượng

- Bữa chiều tối = 25% tổng số năng lượng

Người cao tuổi (người già)

Tuổi càng cao thì sự tiêu hóa năng lượng càng giảm, do đó trong chế độ ăn uống, thức ăn tạo thừa năng lượng sẽ không phù hợp.

Cách thực hiện khẩu phần phù hợp:

- Giảm tỷ lệ bột, đường, dầu, mỡ…

- Thay mỡ động vật bằng dầu thực vật cho dễ tiêu.

- Tăng tỷ lệ đạm có giá trị cao, rau tươi, trái cây chín…

- Thực phẩm chế biến cần dễ tiêu, dễ nhai, ít chất kích thích.

- Nên hạ thấp lượng đường bột trong khẩu phần người lớn tuổi, nhất là hạn chế trước hết các chất đường dễ hấp thu: đường các loại, bánh kẹo hay thức uống ngọt.

- Về sinh tố, cần cung cấp đầy đủ và cân đối các loại sinh tố cần thiết.

- Tránh ăn mặn, rất có hại cho tim, thận.

Tỷ lệ năng lượng cân đối như sau: 4 bữa/ngày

- Bữa sáng 1 = 25% tổng số năng lượng

- Bữa sáng 2 = 15% tổng số năng lượng

- Bữa trưa = 35% tổng số năng lượng

- Bữa tối = 25% tổng số năng lượng

22 tháng 4 2017

Những yếu tố cần thiết để tổ chức một bữa ăn hợp lí:

- Nhu cầu của các thành viên trong gia đình.

- Điều kiện tài chính.

- Đầy đủ các chất dinh dưỡng.

- Có sự thay đổi các món ăn cũng như hình thức trình bày.

20 tháng 2 2019

tau ko cần

3 tháng 3 2019

linh noi dung

📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra...
Đọc tiếp

📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.

Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.

Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra các nghịch lý trong lý thuyết tập không hình thức, đã có nhiều hệ tiên đề được đề nghị vào đầu thế kỷ thứ 20, trong đó có các tiên đề Zermelo–Fraenkel, với tiên đề chọn là nổi tiếng nhất.

Ngôn ngữ của lý thuyết tập hợp được dùng trong định nghĩa của gần như tất cả các đối tượng toán học, như hàm số, và các khái niệm lý thuyết tập hợp được đưa nhiều chương trình giảng dạy toán học. Các sự kiện cơ bản về tập hợp và phần tử trong tập hợp có thể được mang ra giới thiệu ở cấp tiểu học, cùng với sơ đồ Venn, để học về tập hợp các đối tượng vật lý thường gặp. Các phép toán cơ bản như hội và giao có thể được học trong bối cảnh này. Các khái niệm cao hơn như bản số là phần tiêu chuẩn của chương trình toán học của sinh viên đại học.

Lý thuyết tập hợp, được hình thức hóa bằng lôgic bậc nhất (first-order logic), là phương pháp toán học nền tảng thường dùng nhất. Ngoài việc sử dụng nó như một hệ thống nền tảng, lý thuyết tập hợp bản thân nó cũng là một nhánh của toán học, với một cộng đồng nghiên cứu tích cực. Các nghiên cứu mới nhất về lý thuyết tập hợp bao gồm nhiều loại chủ đề khác nhau, từ cấu trúc của dòng số thực đến nghiên cứu tính nhất quán của bản số lớn.

Mục lục

1Lịch sử

1.1Thế kỷ 19

1.220. Jahrhundert

2Khái niệm và ký hiệu cơ bản

2.1Quan hệ giữa các tập hợp

2.1.1Quan hệ bao hàm

2.1.2Quan hệ bằng nhau

2.2Các phép toán trên các tập hợp

3Ghi chú

4Liên kết ngoài

5Đọc thêm

Lịch sử[sửa | sửa mã nguồn]

📷Georg Cantor

Các chủ đề về toán học thường xuất hiện và phát triển thông qua sự tương tác giữa các nhà nghiên cứu. Tuy nhiên, lý tuyết tập hợp được tìm thấy năm 1874 bởi Georg Cantor thông qua bài viết: "On a Characteristic Property of All Real Algebraic Numbers".[1][2]

Thế kỷ 19[sửa | sửa mã nguồn]

📷Tập hợp như là một thu góp trong tư tưởng các đối tượng có quan hệ nào đó với nhau.
Cái trống là phần tử của tập hợp
Cuốn sách không phải là phần tử của tập hợp.

Lý thuyết tập hợp được sáng lập bởi Georg Cantor trong những năm 1874 đến năm 1897. Thay cho thuật ngữ "tập hợp", ban đầu ông ta đã sử dụng những từ như "biểu hiện" (inbegriff) hoặc "sự đa dạng" (Mannigfaltigkeit); Về tập hợp và Lý thuyết tập hợp, ông chỉ nói sau đó. Năm 1895, ông đã diễn tả định nghĩa sau:

Qua một "tập hợp", chúng ta hiểu là bất kỳ một tổng hợp M của một số vật thể m khác nhau được xác định rõ ràng trong quan điểm hoặc suy nghĩ của chúng ta (được gọi là "các phần tử" của M) thành một tổng thể.

Cantor phân loại các tập hợp, đặc biệt là những tập hợp vô hạn, theo Lực lượng của chúng. Đối với tập hợp hữu hạn, đây là số lượng các phần tử của chúng. Ông gọi hai tập hợp " có lực lượng bằng nhau" khi chúng được ánh xạ song ánh với nhau, tức là khi có một mối quan hệ một-một giữa các phần tử của chúng. Cái được định nghĩa là sự đồng nhất lực lượng là một quan hệ tương đương, và một lực lượng hay số phần tử của một tập hợp M theo Cantor, là lớp tương đương của các tập hợp có lực lượng bằng M. Ông là người đầu tiên quan sát thấy rằng có những lực lựong vô hạn khác nhau. Tập hợp các số tự nhiên, và tất cả các tập hợp có lực lượng bằng nó, được Cantor gọi là 'Tập hợp đếm được, tất cả các tập hợp vô hạn khác được gọi là tập hợp không đếm được.

Các kết quả quan trọng từ Cantor

Tập hợp của số tự nhiên, số hữu tỉ (lập luận chéo đầu tiên của Cantor) và số đại số là đếm được và có lực lượng bằng nhau.

Tập hợp số thực có lực lượng lớn hơn so với các số tự nhiên, đó là không đếm được (luận chéo thứ hai củaCantor).

Tập hợp của tất cả các tập hợp con của một tập hợp M luôn luôn có lực lượng lớn hơn là M , mà còn được gọi là định lý Cantor.

Từ bất kỳ hai tập hợp có ít nhất một tập hợp cùng lực lượng với một tập hợp con của tập hợp kia.

Có rất nhiều lực lượng của tập hợp không đếm được.

Cantor gọi Giả thiết continuum là "có một lực lượng ở giữa tập hợp các số tự nhiên và tập hợp các số thực " Ông đã cố gắng để giải quyết, nhưng không thành công. Sau đó nó bật ra rằng vấn đề này trên nguyên tắc không quyết định được.

Ngoài Cantor, Richard Dedekind là một nhà tiên phong quan trọng của lý thuyết về lý thuyết tập hợp. Ông đã nói về các "hệ thống" thay vì tập hợp và phát triển một cấu trúc lý thuyết tập hợp của các con số thực vào năm 1872[4], một số lượng lý thuyết xây dựng số thực [2] và 1888 nói về tiên đề hóa lý thuyết tập hợp các con số tự nhiên.[5]Ông là người đầu tiên tạo ra công thức tiên đề Axiom of extensionality của lý thuyết tập hợp.

Ngay từ năm 1889, Giuseppe Peano, người đã miêu tả tập hợp là các tầng lớp, đã tạo ra cách tính toán bằng công thức logic các tầng lớp đầu tiên làm cơ sở cho số học của ông với các tiên đề Peano, mà ông đã mô tả lần đầu tiên trong một ngôn ngữ lý thuyết tập hợp chính xác. Do đó ông đã phát triển cơ sở cho ngông ngữ công thức ngày nay của lý thuyết tập hợp và giới thiệu nhiều biểu tượng được phổ biến ngày nay, đặc biệt là ký hiệu phần tử {\displaystyle \in }📷, được đọc là là "phần tử của"[6]. Trong khi đó {\displaystyle \in }📷 là chữ viết thường của ε (epsilon) của từ ἐστί (tiếng Hy Lạp: "là").[7]

Gottlob Frege đã cố gắng đưa ra một lý giải lý thuyết tập hợp khác của lý thuyết về số học vào năm 1893. Bertrand Russell đã phát hiện ra mâu thuẫn của nó vào năm 1902, được biết đến như là Nghịch lý Russell. Sự mâu thuẫn này và các mâu thuẫn khác nảy sinh do sự thiết lập tập hợp không hạn chế, đó là lý do tại sao dạng thức ban đầu của lý thuyết tập hợp sau này được gọi là lý thuyết tập hợp ngây thơ. Tuy nhiên, định nghĩa của Cantor không có ý muốn nói tới một lý thuyết tập hợp ngây thơ như vậy, như chứng minh của ông về loại tất cả là Nichtmenge cho thấy bởi nghịch lý Cantor thứ hai [6].[8]

Học thuyết của Cantor về lý thuyết tập hợp hầu như không được công nhận bởi những người đương thời về vai trò quan trọng của nó, và không được coi là bước tiến cách mạng, mà đã bị một số các nhà toán học như Leopold Kronecker không chấp nhận. Thậm chí nhiều hơn, nó còn bị mang tiếng khi các nghịch lý được biết tới, ví dụ như Henri Poincaré, chế diễu, "Logic không còn hoàn toàn, bây giờ nó tạo ra những mâu thuẫn."

20. Jahrhundert[sửa | sửa mã nguồn]

Trong thế kỷ XX, những ý tưởng của Cantor tiếp tục chiếm ưu thế; đồng thời, trong Logic toán, một lý thuyết Axiomatic Quantum đã được thiết lập, qua đó có thể vượt qua các mâu thuẫn hiện thời.

Năm 1903/1908 Bertrand Russell phát triển Type theory của mình, trong đó tập hợp luôn luôn có một kiểu cao hơn các phần tử của chúng, do đó sự hình thành các tập hợp có vấn đề sẽ không thể xảy ra. Ông chỉ ra cách đầu tiên ra khỏi những mâu thuẫn và cho thấy trong "Principia Mathematica" của 1910-1913 cũng là một phần hiệu quả của Type theory ứng dụng. Cuối cùng, tuy nhiên, nó chứng tỏ là không thích hợp với lý thuyết tập hợp của Cantor và cũng không thể vượt qua được sự phức tạp của nó.

Tiên đề lý thuyết tập hợp được phát triển bởi Ernst Zermelo vào năm 1907 ngược lại dễ sử dụng và thành công hơn, trong đó schema of replacement của ông là cần thiết để bổ sung vào. Zermelo thêm nó vào hệ thống Zermelo-Fraenkel năm 1930, mà ông gọi tắt là hệ thống-ZF. Ông đã thiết kế nó cho Urelement mà không phải là tập hợp, nhưng có thể là phần tử của tập hợp và được xem như cái Cantor gọi là "đối tượng của quan điểm của chúng tôi." Lý thuyết tập hợp Zermelo-Fraenkel, tuy nhiên, theo ý tưởng Fraenkel là lý thuyết tập hợp thuần túy mà đối tượng hoàn toàn là các tập hợp.

Tuy nhiên, nhiều nhà toán học thay vì theo một tiên đề hợp lý lại chọn một lý thuyết tập hợp thực dụng, tránh tập hợp có vấn đề, chẳng hạn như những áp dụng của Felix Hausdorff1914 hoặc Erich Kamke từ năm 1928. Dần dần các nhà toán học ý thức hơn rằng lý thuyết tập hợp là một cơ bản không thể thiếu cho cấu trúc toán học. Hệ thống ZF chứng minh được trong thực hành, vì vậy ngày nay nó được đa số các nhà toán học công nhận là cơ sở của toán học hiện đại; không còn có mâu thuẫn có thể bắt nguồn từ hệ thống ZF. Tuy nhiên, sự không mâu thuẫn chỉ có thể được chứng minh cho lý thuyết tập hợp với tập hợp hữu hạn, chứ không phải cho toàn bộ hệ thống ZF, mà chứa lý thuyết tập hợp của Cantor với tập hợp vô hạn. Theo Gödel's incompleteness theorems năm 1931 một chứng minh về tính nhất quán về nguyên tắc là không thể được. Những khám phá Gödel chỉ là chương trình của Hilbert để cung cấp toán học và lý thuyết tập hợp vào một cơ sở tiên đề không mâu thuẫn được chứng minh, một giới hạn, nhưng không cản trở sự thành công của lý thuyết trong bất kỳ cách nào, vì vậy mà một khủng hoảng nền tảng của toán học, mà những người ủng hộ của Intuitionismus, trong thực tế không được cảm thấy.

Tuy nhiên, sự công nhận cuối cùng của lý thuyết tập hợp ZF trong thực tế trì hoãn trong một thời gian dài. Nhóm toán học với bút danh Nicolas Bourbaki đã đóng góp đáng kể cho sự công nhận này; họ muốn mô tả mới toán học đồng nhất dựa trên lý thuyết tập hợp và biến đổi nó vào năm 1939 tại các lãnh vực toán học chính thành công. Trong những năm 1960, nó trở nên phổ biến rộng rãi rằng, lý thuyết tập hợp ZF thích hợp là cơ sở cho toán học. Đã có một khoảng thời gian tạm thời trong đó lý thuyết số lượng đã được dạy ở tiểu học.

Song song với câu chuyện thành công của thuyết tập hợp, tuy nhiên, việc thảo luận về các tiên đề tập hợp vẫn còn lưu hành trong thế giới chuyên nghiệp. Nó cũng hình thành những lý thuyết tập hợp tiên đề thay thế khoảng năm 1937 mà không hướng theo Cantor và Zermelo-Fraenkel, nhưng dựa trên Lý thuyết kiểu (Type Theory) của Willard Van Orman Quine từ New Foundations (NF) của ông ta, năm 1940 lý thuyết tập hợp Neumann-Bernays-Godel, mà khái quát hóa ZF về các lớp (Class (set theory)), hay năm 1955, lý thuyết tập hợp Ackermann, khai triển mới định nghĩa tập hợp của Cantor.

Khái niệm và ký hiệu cơ bản[sửa | sửa mã nguồn]

Lý thuyết tập hợp bắt đầu với một quan hệ nhị phân cơ bản giữa một phần tử o và một tập hợp A. Nếu o là một thành viên (hoặc phần tử) của A, ký hiệu o ∈ A được sử dụng. Khi đó ta cũng nói rằng phần tử a thuộc tập hợp A. Vì các tập cũng là các đối tượng, quan hệ phần tử cũng có thể liên quan đến các tập.

Quan hệ giữa các tập hợp[sửa | sửa mã nguồn]

Quan hệ bao hàm[sửa | sửa mã nguồn]

Nếu tất cả các thành viên của tập A cũng là thành viên của tập B , thì A là một Tập hợp con của B , được biểu thị {\displaystyle A\subseteq B}📷, và tập hợp B bao hàm tập hợp A. Ví dụ, {1, 2} là một tập hợp con của {1, 2, 3}, và {2} cũng vậy, nhưng { 1, 4} thì không.

Quan hệ bằng nhau[sửa | sửa mã nguồn]

Hai tập hợp A và B được gọi là bằng nhau nếu A là tập hợp con của B và B cũng là tập hợp con của A, ký hiệu A = B.

Theo định nghĩa, mọi tập hợp đều là tập con của chính nó; tập rỗng là tập con của mọi tập hợp. Mọi tập hợp A không rỗng có ít nhất hai tập con là rỗng và chính nó. Chúng được gọi là các tập con tầm thường của tập A. Nếu tập con B của A khác với chính A, nghĩa là có ít nhất một phần tử của A không thuộc B thì B được gọi là tập con thực sự hay tập con chân chính của tập A.

Chú ý rằng 1 và 2 và 3 là các thành viên của tập {1, 2, 3}, nhưng không phải là tập con, và các tập con, chẳng hạn như {1}, không phải là thành viên của tập {1, 2, 3}.

Các phép toán trên các tập hợp[sửa | sửa mã nguồn]

Hợp (Union): Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu A {\displaystyle \cup }📷 B

Ta có A {\displaystyle \cup }📷 B = {x: x {\displaystyle \in }📷 A hoặc x {\displaystyle \in }📷 B}, hợp của {1, 2, 3} và {2, 3, 4} là tập {1, 2, 3, 4}.

Giao (Intersection): Giao của hai tập hợp A và B là tập hợp tất cả các phần tử vừa thuộc A, vừa thuộc B, ký hiệu A {\displaystyle \cap }📷 B

Ta có A {\displaystyle \cap }📷 B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \in }📷 B}, giao của {1, 2, 3} và {2, 3, 4} là tập { 2, 3}.

Hiệu (Difference): Hiệu của tập hợp A với tập hợp B là tập hợp tất cả các phần tử thuộc A nhưng không thuộc B, ký hiệu {\displaystyle A\setminus B}📷

Ta có: A \ B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \notin }📷 B}Lưu ý, A \ B {\displaystyle \neq }📷 B \ A

Phần bù (Complement): là hiệu của tập hợp con. Nếu A{\displaystyle \subset }📷B thì B \ A được gọi là phần bù của A trong B, ký hiệu CAB (hay CB A)

1
Bí quyết giảm cân cho trẻ 10 tuổi khoa học và an toànTrẻ em và người trưởng thành có nhu cầu dinh dưỡng rất khác nhau. Vì thế với những trẻ bị thừa cân, béo phì, không nên áp dụng chế độ ăn kiêng của người trưởng thành cho trẻ để không bị ảnh hưởng đến sự phát triển và sức khỏe của trẻ.📷Do trẻ còn phát triển chiều cao nên ngoại trừ những trường hợp béo phì nặng...
Đọc tiếp

Bí quyết giảm cân cho trẻ 10 tuổi khoa học và an toàn

Trẻ em và người trưởng thành có nhu cầu dinh dưỡng rất khác nhau. Vì thế với những trẻ bị thừa cân, béo phì, không nên áp dụng chế độ ăn kiêng của người trưởng thành cho trẻ để không bị ảnh hưởng đến sự phát triển và sức khỏe của trẻ.

📷

Do trẻ còn phát triển chiều cao nên ngoại trừ những trường hợp béo phì nặng cần giảm cân (độ 2, 3), đa số chỉ cần giữ nguyên cân nặng, không tăng cân, để khi trẻ phát triển chiều cao sẽ vẫn đạt cân nặng hợp lý.

Ăn đầy đủ các thực phẩm dinh dưỡng như: Ngũ cốc, khoai củ, thịt, cá trứng, sữa, dầu ăn, rau, hoa quả,…

Ăn đều cả về lượng và thời gian giữa các bữa, không ăn no hoặc không bỏ bữa và không ăn vặt.

Ăn nhiều chất xơ vào buổi tối và không ăn đêm.

Tránh đồ ăn nhiều dầu mỡ đặc biệt là dầu động vật.

Hạn chế các loại nước ngọt và nước có ga. Nên uống nước lọc hay những thứ đồ uống thanh mát, nhiều vitamin C.

Uống sữa thì không nên uống sữa béo.

Tăng cường ăn hoa quả ít ngọt và rau

Uống đủ nước mỗi ngày 1.5 -2 lít nước, chia làm nhiều lần.

Nhu cầu chất béo: tiêu thụ lipid quá thấp trong bữa ăn hàng ngày ảnh hưởng đến chức phận nhiều cơ quan tổ chức trong cơ thể, đặc biệt là phát triển não bộ và hoàn thiện hệ thống thần kinh ở trẻ em, nhất là trẻ nhỏ. Các acid béo đồng thời là vật mang của các vitamin cần thiết tan trong dung môi dầu mỡ, như A, D, E, K để hòa tan và hấp thu.

Hậu quả của chế độ ăn quá nghèo nàn chất béo ở trẻ nhỏ và trẻ em nói chung là chậm tăng trưởng và thiếu dinh dưỡng do không chuyển hóa được các vitamin tan trong dầu mỡ. Còn nếu tiêu thụ quá thừa thì chúng ta đều biết sẽ làm nặng thêm tình trạng thừa cân béo phì có liên quan đến các bệnh mạn tính không lây và hội chứng rối loạn chuyển hóa. Vì vậy, cho trẻ thừa cân béo phì ăn đủ lượng chất béo là rất quan trọng và trên thực tế những đối tượng này dễ bị ăn quá nhiều (ăn như bình thường trẻ mập hay ăn) hoặc quá ít chất béo (do ăn kiêng nghiêm ngặt).

3
19 tháng 2 2019

Hà hà, Linh với Tâm nghe rõ chưa???

23 tháng 2 2019

hè hè. Cóp trên mạng nên chuẩn xác lắm đó

29 tháng 4 2016

ai giúp mink với

 

28 tháng 2 2017

Bạn giở SGK Công nghệ 6

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả...
Đọc tiếp

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]

Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả thuyết bằng các chứng minh toán học. Khi những cấu trúc toán học là mô hình tốt cho hiện thực, lúc đó suy luận toán học có thể cung cấp sự hiểu biết sâu sắc hay những tiên đoán về tự nhiên. Thông qua việc sử dụng những phương pháp trừu tượng và lôgic, toán học đã phát triển từ việc đếm, tính toán, đo lường, và nghiên cứu có hệ thống những hình dạng và chuyển động của các đối tượng vật lý. Con người đã ứng dụng toán học trong đời sống từ xa xưa. Việc tìm lời giải cho những bài toán có thể mất hàng năm, hay thậm chí hàng thế kỷ.[11]

Những lập luận chặt chẽ xuất hiện trước tiên trong nền toán học Hy Lạp cổ đại, đáng chú ý nhất là trong tác phẩm Cơ sở của Euclid. Kể từ những công trình tiên phong của Giuseppe Peano (1858–1932), David Hilbert (1862–1943), và của những nhà toán học khác trong thế kỷ 19 về các hệ thống tiên đề, nghiên cứu toán học trở thành việc thiết lập chân lý thông qua suy luận lôgic chặt chẽ từ những tiên đề và định nghĩa thích hợp. Toán học phát triển tương đối chậm cho tới thời Phục hưng, khi sự tương tác giữa những phát minh toán học với những phát kiến khoa học mới đã dẫn đến sự gia tăng nhanh chóng những phát minh toán học vẫn tiếp tục cho đến ngày nay.[12]

Toán học được sử dụng trên khắp thế giới như một công cụ thiết yếu trong nhiều lĩnh vực, bao gồm khoa học, kỹ thuật, y học, và tài chính. Toán học ứng dụng, một nhánh toán học liên quan đến việc ứng dụng kiến thức toán học vào những lĩnh vực khác, thúc đẩy và sử dụng những phát minh toán học mới, từ đó đã dẫn đến việc phát triển nên những ngành toán hoàn toàn mới, chẳng hạn như thống kê và lý thuyết trò chơi. Các nhà toán học cũng dành thời gian cho toán học thuần túy, hay toán học vị toán học. Không có biên giới rõ ràng giữa toán học thuần túy và toán học ứng dụng, và những ứng dụng thực tiễn thường được khám phá từ những gì ban đầu được xem là toán học thuần túy.[13]

Mục lục

1Lịch sử

2Cảm hứng, thuần túy ứng dụng, và vẻ đẹp

3Ký hiệu, ngôn ngữ, tính chặt chẽ

4Các lĩnh vực toán học

4.1Nền tảng và triết học

4.2Toán học thuần túy

4.2.1Lượng

4.2.2Cấu trúc

4.2.3Không gian

4.2.4Sự thay đổi

4.3Toán học ứng dụng

4.3.1Thống kê và những lĩnh vực liên quan

4.3.2Toán học tính toán

5Giải thưởng toán học và những bài toán chưa giải được

6Mối quan hệ giữa toán học và khoa học

7Xem thêm

8Chú thích

9Tham khảo

10Liên kết ngoài

Lịch sử[sửa | sửa mã nguồn]

📷Nhà toán học Hy Lạp Pythagoras (khoảng 570–495 trước Tây lịch), được coi là đã phát minh ra định lý Pythagore.Bài chi tiết: Lịch sử toán học📷Nhà toán học Ba Tư Al-Khwarizmi (Khoảng 780-850 TCN), người phát minh ra Đại số.

Từ "mathematics" trong tiếng Anh bắt nguồn từ μάθημα (máthēma) trong tiếng Hy Lạp cổ, có nghĩa là "thứ học được",[14] "những gì người ta cần biết," và như vậy cũng có nghĩa là "học" và "khoa học"; còn trong tiếng Hy Lạp hiện đại thì nó chỉ có nghĩa là "bài học." Từ máthēma bắt nguồn từ μανθάνω (manthano), từ tương đương trong tiếng Hy Lạp hiện đại là μαθαίνω (mathaino), cả hai đều có nghĩa là "học." Trong tiếng Việt, "toán" có nghĩa là tính; "toán học" là môn học về toán số.[15] Trong các ngôn ngữ sử dụng từ vựng gốc Hán khác, môn học này lại được gọi là số học.

Sự tiến hóa của toán học có thể nhận thấy qua một loạt gia tăng không ngừng về những phép trừu tượng, hay qua sự mở rộng của nội dung ngành học. Phép trừu tượng đầu tiên, mà nhiều loài động vật có được,[16] có lẽ là về các con số, với nhận thức rằng, chẳng hạn, một nhóm hai quả táo và một nhóm hai quả cam có cái gì đó chung, ở đây là số lượng quả trong mỗi nhóm.

Các bằng chứng khảo cổ học cho thấy, ngoài việc biết đếm những vật thể vật lý, con người thời tiền sử có thể cũng đã biết đếm những đại lượng trừu tượng như thời gian - ngày, mùa, và năm.[17]

Đến khoảng năm 3000 trước Tây lịch thì toán học phức tạp hơn mới xuất hiện, khi người Babylon và người Ai Cập bắt đầu sử dụng số học, đại số, và hình học trong việc tính thuế và những tính toán tài chính khác, trong xây dựng, và trong quan sát thiên văn.[18] Toán học được sử dụng sớm nhất trong thương mại, đo đạc đất đai, hội họa, dệt, và trong việc ghi nhớ thời gian.

Các phép tính số học căn bản trong toán học Babylon (cộng, trừ, nhân, và chia) xuất hiện đầu tiên trong các tài liệu khảo cổ. Giữa năm 600 đến 300 trước Tây lịch, người Hy Lạp cổ đã bắt đầu nghiên cứu một cách có hệ thống về toán học như một ngành học riêng, hình thành nên toán học Hy Lạp.[19] Kể từ đó toán học đã phát triển vượt bậc; sự tương tác giữa toán học và khoa học đã đem lại nhiều thành quả và lợi ích cho cả hai. Ngày nay, những phát minh toán học mới vẫn tiếp tục xuất hiện.

Cảm hứng, thuần túy ứng dụng, và vẻ đẹp[sửa | sửa mã nguồn]

Bài chi tiết: Vẻ đẹp của toán học📷Isaac Newton (1643–1727), một trong những người phát minh ra vi tích phân.

Toán học nảy sinh ra từ nhiều kiểu bài toán khác nhau. Trước hết là những bài toán trong thương mại, đo đạc đất đai, kiến trúc, và sau này là thiên văn học; ngày nay, tất cả các ngành khoa học đều gợi ý những bài toán để các nhà toán học nghiên cứu, ngoài ra còn nhiều bài toán nảy sinh từ chính bản thân ngành toán. Chẳng hạn, nhà vật lý Richard Feynman đã phát minh ra tích phân lộ trình (path integral) cho cơ học lượng tử bằng cách kết hợp suy luận toán học với sự hiểu biết sâu sắc về mặt vật lý, và lý thuyết dây - một lý thuyết khoa học vẫn đang trong giai đoạn hình thành với cố gắng thống nhất tất cả các tương tác cơ bản trong tự nhiên - tiếp tục gợi hứng cho những lý thuyết toán học mới.[20] Một số lý thuyết toán học chỉ có ích trong lĩnh vực đã giúp tạo ra chúng, và được áp dụng để giải các bài toán khác trong lĩnh vực đó. Nhưng thường thì toán học sinh ra trong một lĩnh vực có thể hữu ích trong nhiều lĩnh vực, và đóng góp vào kho tàng các khái niệm toán học.

Các nhà toán học phân biệt ra hai ngành toán học thuần túy và toán học ứng dụng. Tuy vậy các chủ đề toán học thuần túy thường tìm thấy một số ứng dụng, chẳng hạn như lý thuyết số trong ngành mật mã học. Việc ngay cả toán học "thuần túy nhất" hóa ra cũng có ứng dụng thực tế chính là điều mà Eugene Wigner gọi là "sự hữu hiệu đến mức khó tin của toán học".[21] Giống như trong hầu hết các ngành học thuật, sự bùng nổ tri thức trong thời đại khoa học đã dẫn đến sự chuyên môn hóa: hiện nay có hàng trăm lĩnh vực toán học chuyên biệt và bảng phân loại các chủ đề toán học đã dài tới 46 trang.[22] Một vài lĩnh vực toán học ứng dụng đã nhập vào những lĩnh vực liên quan nằm ngoài toán học và trở thành những ngành riêng, trong đó có xác suất, vận trù học, và khoa học máy tính.

Những ai yêu thích ngành toán thường thấy toán học có một vẻ đẹp nhất định. Nhiều nhà toán học nói về "sự thanh lịch" của toán học, tính thẩm mỹ nội tại và vẻ đẹp bên trong của nó. Họ coi trọng sự giản đơn và tính tổng quát. Vẻ đẹp ẩn chứa cả bên trong những chứng minh toán học đơn giản và gọn nhẹ, chẳng hạn chứng minh của Euclid cho thấy có vô hạn số nguyên tố, và trong những phương pháp số giúp đẩy nhanh các phép tính toán, như phép biến đổi Fourier nhanh. Trong cuốn sách Lời bào chữa của một nhà toán học (A Mathematician's Apology) của mình, G. H. Hardy tin rằng chính những lý do về mặt thẩm mỹ này đủ để biện minh cho việc nghiên cứu toán học thuần túy. Ông nhận thấy những tiêu chuẩn sau đây đóng góp vào một vẻ đẹp toán học: tầm quan trọng, tính không lường trước được, tính không thể tránh được, và sự ngắn gọn.[23] Sự phổ biến của toán học vì mục đích giải trí là một dấu hiệu khác cho thấy nhiều người tìm thấy sự sảng khoái trong việc giải toán...

Ký hiệu, ngôn ngữ, tính chặt chẽ[sửa | sửa mã nguồn]

Bài chi tiết: Danh sách ký hiệu toán học📷Leonhard Euler, người tạo ra và phổ biến hầu hết các ký hiệu toán học được dùng ngày nay.

Hầu hết các ký hiệu toán học đang dùng ngày nay chỉ mới được phát minh vào thế kỷ 16.[24] Trước đó, toán học được viết ra bằng chữ, quá trình nhọc nhằn này đã cản trở sự phát triển của toán học.[25] Euler (1707–1783) là người tạo ra nhiều trong số những ký hiệu đang được dùng ngày nay. Ký hiệu hiện đại làm cho toán học trở nên dễ hơn đối với chuyên gia toán học, nhưng người mới bắt đầu học toán thường thấy nản lòng. Các ký hiệu cực kỳ ngắn gọn: một vài biểu tượng chứa đựng rất nhiều thông tin. Giống ký hiệu âm nhạc, ký hiệu toán học hiện đại có cú pháp chặt chẽ và chứa đựng thông tin khó có thể viết theo một cách khác đi.

Ngôn ngữ toán học có thể khó hiểu đối với người mới bắt đầu. Những từ như hoặc và chỉ có nghĩa chính xác hơn so với trong lời nói hàng ngày. Ngoài ra, những từ như mở và trường đã được cho những nghĩa riêng trong toán học. Những thuật ngữ mang tính kỹ thuật như phép đồng phôi và khả tích có nghĩa chính xác trong toán học. Thêm vào đó là những cụm từ như nếu và chỉ nếu nằm trong thuật ngữ chuyên ngành toán học. Có lý do tại sao cần có ký hiệu đặc biệt và vốn từ vựng chuyên ngành: toán học cần sự chính xác hơn lời nói thường ngày. Các nhà toán học gọi sự chính xác này của ngôn ngữ và logic là "tính chặt chẽ."

Các lĩnh vực toán học[sửa | sửa mã nguồn]

Bài chi tiết: Các lĩnh vực toán học

Nói chung toán học có thể được chia thành các ngành học về lượng, cấu trúc, không gian, và sự thay đổi (tức là số học, đại số, hình học, và giải tích). Ngoài những mối quan tâm chính này, toán học còn có những lĩnh vực khác khảo sát mối quan hệ giữa toán học và những ngành khác, như với logic và lý thuyết tập hợp, toán học thực nghiệm trong những ngành khoa học khác nhau (toán học ứng dụng), và gần đây hơn là sự nghiên cứu chặt chẽ về tính bất định.

Nền tảng và triết học[sửa | sửa mã nguồn]

📷Kurt Gödel là một trong những nhà logic toán học lớn, với các định lý bất toàn.

Để làm rõ nền tảng toán học, lĩnh vực logic toán học và lý thuyết tập hợp đã được phát triển. Logic toán học bao gồm nghiên cứu toán học về logic và ứng dụng của logic hình thức trong những lĩnh vực toán học khác. Lý thuyết tập hợp là một nhánh toán học nghiên cứu các tập hợp hay tập hợp những đối tượng. Lý thuyết phạm trù, liên quan đến việc xử lý các cấu trúc và mối quan hệ giữa chúng bằng phương pháp trừu tượng, vẫn đang tiếp tục phát triển. Cụm từ "khủng hoảng nền tảng" nói đến công cuộc tìm kiếm một nền tảng toán học chặt chẽ diễn ra từ khoảng năm 1900 đến 1930.[26] Một số bất đồng về nền tảng toán học vẫn còn tồn tại cho đến ngày nay. Cuộc khủng hoảng nền tảng nổi lên từ một số tranh cãi thời đó, trong đó có những tranh cãi liên quan đến lý thuyết tập hợp của Cantor và cuộc tranh cãi giữa Brouwer và Hilbert.

Khoa học máy tính lý thuyết bao gồm lý thuyết khả tính (computability theory), lý thuyết độ phức tạp tính toán, và lý thuyết thông tin. Lý thuyết khả tính khảo sát những giới hạn của những mô hình lý thuyết khác nhau về máy tính, bao gồm mô hình máy Turing nổi tiếng. Lý thuyết độ phức tạp nghiên cứu khả năng có thể giải được bằng máy tính; một số bài toán, mặc dù về lý thuyết có thể giải được bằng máy tính, cần thời gian hay không gian tính toán quá lớn, làm cho việc tìm lời giải trong thực tế gần như không thể, ngay cả với sự tiến bộ nhanh chóng của phần cứng máy tính. Một ví dụ là bài toán nổi tiếng "P = NP?".[27] Cuối cùng, lý thuyết thông tin quan tâm đến khối lượng dữ liệu có thể lưu trữ được trong một môi trường lưu trữ nhất định, và do đó liên quan đến những khái niệm như nén dữ liệu và entropy thông tin.

{\displaystyle p\Rightarrow q\,}📷📷📷📷Logic toán họcLý thuyết tập hợpLý thuyết phạm trùLý thuyết tính toán

Toán học thuần túy[sửa | sửa mã nguồn]

Lượng[sửa | sửa mã nguồn]

Việc nghiên cứu về lượng (quantity) bắt đầu với các con số, trước hết với số tự nhiên và số nguyên và các phép biến đổi số học, nói đến trong lĩnh vực số học. Những tính chất sâu hơn về các số nguyên được nghiên cứu trong lý thuyết số, trong đó có định lý lớn Fermat nổi tiếng. Trong lý thuyết số, giả thiết số nguyên tố sinh đôi và giả thiết Goldbach là hai bài toán chưa giải được.

Khi hệ thống số được phát triển thêm, các số nguyên được xem như là tập con của các số hữu tỉ. Các số này lại được bao gồm trong số thực vốn được dùng để thể hiện những đại lượng liên tục. Số thực được tổng quát hóa thành số phức. Đây là những bước đầu tiên trong phân bố các số, sau đó thì có các quaternion (một sự mở rộng của số phức) và octonion. Việc xem xét các số tự nhiên cũng dẫn đến các số vô hạn (transfinite numbers), từ đó chính thức hóa khái niệm "vô hạn". Một lĩnh vực nghiên cứu khác là kích cỡ (size), từ đó sinh ra số đếm (cardinal numbers) và rồi một khái niệm khác về vô hạn: số aleph, cho phép thực hiện so sánh có ý nghĩa kích cỡ của các tập hợp lớn vô hạn.

{\displaystyle 1,2,3,\ldots \!}📷{\displaystyle \ldots ,-2,-1,0,1,2\,\ldots \!}📷{\displaystyle -2,{\frac {2}{3}},1.21\,\!}📷{\displaystyle -e,{\sqrt {2}},3,\pi \,\!}📷{\displaystyle 2,i,-2+3i,2e^{i{\frac {4\pi }{3}}}\,\!}📷Số tự nhiênSố nguyênSố hữu tỉSố thựcSố phức

Cấu trúc[sửa | sửa mã nguồn]

Nhiều đối tượng toán học, chẳng hạn tập hợp những con số và những hàm số, thể hiện cấu trúc nội tại toát ra từ những phép biến đổi toán học hay những mối quan hệ được xác định trên tập hợp. Toán học từ đó nghiên cứu tính chất của những tập hợp có thể được diễn tả dưới dạng cấu trúc đó; chẳng hạn lý thuyết số nghiên cứu tính chất của tập hợp những số nguyên có thể được diễn tả dưới dạng những phép biến đổi số học. Ngoài ra, thường thì những tập hợp có cấu trúc (hay những cấu trúc) khác nhau đó thể hiện những tính chất giống nhau, khiến người ta có thể xây dựng nên những tiên đề cho một lớp cấu trúc, rồi sau đó nghiên cứu đồng loạt toàn bộ lớp cấu trúc thỏa mãn những tiên đề này. Do đó người ta có thể nghiên cứu các nhóm, vành, trường, và những hệ phức tạp khác; những nghiên cứu như vậy (về những cấu trúc được xác định bởi những phép biến đổi đại số) tạo thành lĩnh vực đại số trừu tượng. Với mức độ tổng quát cao của mình, đại số trừu tượng thường có thể được áp dụng vào những bài toán dường như không liên quan gì đến nhau. Một ví dụ về lý thuyết đại số là đại số tuyến tính, lĩnh vực nghiên cứu về các không gian vectơ, ở đó những yếu tố cấu thành nó gọi là vectơ có cả lượng và hướng và chúng có thể được dùng để mô phỏng các điểm (hay mối quan hệ giữa các điểm) trong không gian. Đây là một ví dụ về những hiện tượng bắt nguồn từ những lĩnh vực hình học và đại sốban đầu không liên quan gì với nhau nhưng lại tương tác rất mạnh với nhau trong toán học hiện đại. Toán học tổ hợp nghiên cứu những cách tính số lượng những đối tượng có thể xếp được vào trong một cấu trúc nhất định.

{\displaystyle {\begin{matrix}(1,2,3)&(1,3,2)\\(2,1,3)&(2,3,1)\\(3,1,2)&(3,2,1)\end{matrix}}}📷📷📷📷📷📷Toán học tổ hợpLý thuyết sốLý thuyết nhómLý thuyết đồ thịLý thuyết trật tựĐại số

Không gian[sửa | sửa mã nguồn]

Việc nghiên cứu không gian bắt đầu với hình học - cụ thể là hình học Euclid. Lượng giác là một lĩnh vực toán học nghiên cứu về mối quan hệ giữa các cạnh và góc của tam giác và với các hàm lượng giác; nó kết hợp không gian và các con số, và bao gồm định lý Pythagore nổi tiếng. Ngành học hiện đại về không gian tổng quát hóa những ý tưởng này để bao gồm hình học nhiều chiều hơn, hình học phi Euclide (đóng vai trò quan trọng trong lý thuyết tương đối tổng quát), và tô pô. Cả lượng và không gian đều đóng vai trò trong hình học giải tích, hình học vi phân, và hình học đại số. Hình học lồi và hình học rời rạc trước đây được phát triển để giải các bài toán trong lý thuyết số và giải tích phiếm hàm thì nay đang được nghiên cứu cho các ứng dụng trong tối ưu hóa (tối ưu lồi) và khoa học máy tính (hình học tính toán). Trong hình học vi phân có các khái niệm bó sợi (fiber bundles) và vi tích phân trên các đa tạp, đặc biệt là vi tích phân vectơ và vi tích phân tensor. Hình học đại số thì mô tả các đối tượng hình học dưới dạng lời giải là những tập hợp phương trình đa thức, cùng với những khái niệm về lượng và không gian, cũng như nghiên cứu về các nhóm tô-pô kết hợp cấu trúc và không gian. Các nhóm Lie được dùng để nghiên cứu không gian, cấu trúc, và sự thay đổi. Tô pô trong tất cả những khía cạnh của nó có thể là một lĩnh vực phát triển vĩ đại nhất của toán học thế kỷ 20; nó bao gồm tô-pô tập hợp điểm (point-set topology), tô-pô lý thuyết tập hợp (set-theoretic topology), tô-pô đại số và tô-pô vi phân (differential topology). Trong đó, những chủ đề của tô-pô hiện đại là lý thuyết không gian mêtric hóa được (metrizability theory), lý thuyết tập hợp tiên đề (axiomatic set theory), lý thuyết đồng luân (homotopy theory), và lý thuyết Morse. Tô-pô cũng bao gồm giả thuyết Poincaré nay đã giải được, và giả thuyết Hodge vẫn chưa giải được. Những bài toán khác trong hình học và tô-pô, bao gồm định lý bốn màu và giả thiết Kepler, chỉ giải được với sự trợ giúp của máy tính.

📷📷📷📷📷📷Hình họcLượng giácHình học vi phânTô pôHình học fractalLý thuyết về độ đo

Sự thay đổi[sửa | sửa mã nguồn]

Hiểu và mô tả sự thay đổi là chủ đề thường gặp trong các ngành khoa học tự nhiên. Vi tích phân là một công cụ hiệu quả đã được phát triển để nghiên cứu sự thay đổi đó. Hàm sốtừ đây ra đời, như một khái niệm trung tâm mô tả một đại lượng đang thay đổi. Việc nghiên cứu chặt chẽ các số thực và hàm số của một biến thực được gọi là giải tích thực, với số phức thì có lĩnh vực tương tự gọi là giải tích phức. Giải tích phiếm hàm (functional analysis) tập trung chú ý vào những không gian thường là vô hạn chiều của hàm số. Một trong nhiều ứng dụng của giải tích phiếm hàm là trong cơ học lượng tử (ví dụ: lý thuyết phiếm hàm mật độ). Nhiều bài toán một cách tự nhiên dẫn đến những mối quan hệ giữa lượng và tốc độ thay đổi của nó, rồi được nghiên cứu dưới dạng các phương trình vi phân. Nhiều hiện tượng trong tự nhiên có thể được mô tả bằng những hệ thống động lực; lý thuyết hỗn độn nghiên cứu cách thức theo đó nhiều trong số những hệ thống động lực này thể hiện những hành vi không tiên đoán được nhưng vẫn có tính tất định.

📷📷📷📷📷📷Vi tích phânVi tích phân vec-tơPhương trình vi phânHệ thống động lựcLý thuyết hỗn độnGiải tích phức

Toán học ứng dụng[sửa | sửa mã nguồn]

Toán học ứng dụng quan tâm đến những phương pháp toán học thường được sử dụng trong khoa học, kỹ thuật, kinh doanh, và công nghiệp. Như vậy, "toán học ứng dụng" là một ngành khoa học toán học với kiến thức đặc thù. Thuật ngữ toán học ứng dụng cũng được dùng để chỉ lĩnh vực chuyên nghiệp, ở đó các nhà toán học giải quyết các bài toán thực tế. Với tư cách là một ngành nghề chú trọng vào các bài toán thực tế, toán học ứng dụng tập trung vào "việc thiết lập, nghiên cứu, và sử dụng những mô hình toán học" trong khoa học, kỹ thuật, và những lĩnh vực thực hành toán học khác. Trước đây, những ứng dụng thực tế đã thúc đẩy sự phát triển các lý thuyết toán học, để rồi sau đó trở thành chủ đề nghiên cứu trong toán học thuần túy, nơi toán học được phát triển chủ yếu cho chính nó. Như vậy, hoạt động của toán học ứng dụng nhất thiết có liên hệ đến nghiên cứu trong lĩnh vực toán học thuần túy.

Thống kê và những lĩnh vực liên quan[sửa | sửa mã nguồn]

Toán học ứng dụng có nhiều phần chung với thống kê, đặc biệt với lý thuyết xác suất. Các nhà thống kê, khi làm việc trong một công trình nghiên cứu, "tạo ra số liệu có ý nghĩa" sử dụng phương pháp tạo mẫu ngẫu nhiên (random sampling) và những thí nghiệm được ngẫu nhiên hóa (randomized experiments);[28] việc thiết kế thí nghiệm hay mẫu thống kê xác định phương pháp phân tích số liệu (trước khi số liệu được tạo ra). Khi xem xét lại số liệu từ các thí nghiệm và các mẫu hay khi phân tích số liệu từ những nghiên cứu bằng cách quan sát, các nhà thống kê "làm bật ra ý nghĩa của số liệu" sử dụng phương pháp mô phỏng và suy luận – qua việc chọn mẫu và qua ước tính; những mẫu ước tính và những tiên đoán có được từ đó cần được thử nghiệm với những số liệu mới.[29]

Lý thuyết thống kê nghiên cứu những bài toán liên quan đến việc quyết định, ví dụ giảm thiểu nguy cơ (sự tổn thất được mong đợi) của một hành động mang tính thống kê, chẳng hạn sử dụng phương pháp thống kê trong ước tính tham số, kiểm nghiệm giả thuyết, và chọn ra tham số cho kết quả tốt nhất. Trong những lĩnh vực truyền thống này của thống kê toán học, bài toán quyết định-thống kê được tạo ra bằng cách cực tiểu hóa một hàm mục tiêu (objective function), chẳng hạn giá thành hay sự mất mát được mong đợi, dưới những điều kiện nhất định.[30] Vì có sử dụng lý thuyết tối ưu hóa, lý thuyết toán học về thống kê có chung mối quan tâm với những ngành khoa học khác nghiên cứu việc quyết định, như vận trù học, lý thuyết điều khiển, và kinh tế học toán.[31]

Toán học tính toán[sửa | sửa mã nguồn]

Toán học tính toán đưa ra và nghiên cứu những phương pháp giải các bài toán toán học mà con người thường không có khả năng giải số được. Giải tích số nghiên cứu những phương pháp giải các bài toán trong giải tích sử dụng giải tích phiếm hàm và lý thuyết xấp xỉ; giải tích số bao gồm việc nghiên cứu xấp xỉ và rời rạc hóa theo nghĩa rộng, với sự quan tâm đặc biệt đến sai số làm tròn (rounding errors). Giải tích số và nói rộng hơn tính toán khoa học (scientific computing) cũng nghiên cứu những chủ đề phi giải tích như khoa học toán học, đặc biệt là ma trận thuật toán và lý thuyết đồ thị. Những lĩnh vực khác của toán học tính toán bao gồm đại số máy tính (computer algebra) và tính toán biểu tượng(symbolic computation).

📷📷📷📷📷📷📷Vật lý toán họcThủy động lực họcGiải tích sốTối ưu hóaLý thuyết xác suấtThống kêMật mã học📷📷📷📷📷 📷📷Tài chính toánLý thuyết trò chơiSinh học toánHóa học toánToán sinh họcKinh tế toánLý thuyết điều khiển

Giải thưởng toán học và những bài toán chưa giải được[sửa | sửa mã nguồn]

Có thể nói giải thưởng toán học danh giá nhất là Huy chương Fields,[32][33] thiết lập vào năm 1936 và nay được trao bốn năm một lần cho 2 đến 4 nhà toán học có độ tuổi dưới 40. Huy chương Fields thường được xem là tương đương với Giải Nobel trong những lĩnh vực khác. (Giải Nobel không xét trao thưởng trong lĩnh vực toán học) Một số giải thưởng quốc tế quan trọng khác gồm có: Giải Wolf về Toán học (thiết lập vào năm 1978) để ghi nhận thành tựu trọn đời; Giải Abel (thiết lập vào năm 2003) dành cho những nhà toán học xuất chúng; Huy chương Chern (thiết lập vào năm 2010) để ghi nhận thành tựu trọn đời.

Năm 1900, nhà toán học người Đức David Hilbert biên soạn một danh sách gồm 23 bài toán chưa có lời giải (còn được gọi là Các bài toán của Hilbert). Danh sách này rất nổi tiếng trong cộng đồng các nhà toán học, và ngày nay có ít nhất chín bài đã được giải. Một danh sách mới bao gồm bảy bài toán quan trọng, gọi là "Các bài toán của giải thiên niên kỷ" (Millennium Prize Problems), đã được công bố vào năm 2000, ai giải được một trong số các bài toán này sẽ được trao giải một triệu đô-la. Chỉ có một bài toán từ danh sách của Hilbert (cụ thể là giả thuyết Riemann) trong danh sách mới này. Tới nay, một trong số bảy bài toán đó (giả thuyết Poincaré) đã có lời giải.

Mối quan hệ giữa toán học và khoa học[sửa | sửa mã nguồn]

Carl Friedrich Gauss, người được xem là "hoàng tử của toán học."[34]

Gauss xem toán học là "nữ hoàng của các ngành khoa học".[35] Trong cụm từ La-tinh Regina Scientiarum và cụm từ tiếng Đức Königin der Wissenschaften (cả hai đều có nghĩa là "nữ hoàng của các ngành khoa học"), từ chỉ "khoa học" có nghĩa là "lĩnh vực tri thức," và đây cũng chính là nghĩa gốc của từ science (khoa học) trong tiếng Anh; như vậy toán học là một lĩnh vực tri thức. Sự chuyên biệt hóa giới hạn nghĩa của "khoa học" vào "khoa học tự nhiên" theo sau sự phát triển của phương pháp luận Bacon, từ đó đối lập "khoa học tự nhiên" với phương pháp kinh viện, phương pháp luận Aristotle nghiên cứu từ những nguyên lý cơ sở. So với các ngành khoa học tự nhiên như sinh học hay vật lý học thì thực nghiệm và quan sát thực tế có vai trò không đáng kể trong toán học. Albert Einstein nói rằng "khi các định luật toán học còn phù hợp với thực tại thì chúng không chắc chắn; và khi mà chúng chắc chắn thì chúng không còn phù hợp với thực tại."[36] Mới đây hơn, Marcus du Sautoy đã gọi toán học là "nữ hoàng của các ngành khoa học;... động lực thúc đẩy chính đằng sau những phát kiến khoa học."[37]

Nhiều triết gia tin rằng, trong toán học, tính có thể chứng minh được là sai (falsifiability) không thể thực hiện được bằng thực nghiệm, và do đó toán học không phải là một ngành khoa học theo như định nghĩa của Karl Popper.[38] Tuy nhiên, trong thập niên 1930, các định lý về tính không đầy đủ (incompleteness theorems) của Gödel đưa ra gợi ý rằng toán học không thể bị quy giảm về logic mà thôi, và Karl Popper kết luận rằng "hầu hết các lý thuyết toán học, giống như các lý thuyết vật lý và sinh học, mang tính giả định-suy diễn: toán học thuần túy do đó trở nên gần gũi hơn với các ngành khoa học tự nhiên nơi giả định mang tính chất suy đoán hơn hơn mức mà người ta nghĩ."[39]

Một quan điểm khác thì cho rằng một số lĩnh vực khoa học nhất định (như vật lý lý thuyết) là toán học với những tiên đề được tạo ra để kết nối với thực tại. Thực sự, nhà vật lý lý thuyết J. M. Ziman đã cho rằng khoa học là "tri thức chung" và như thế bao gồm cả toán học.[40] Dù sao đi nữa, toán học có nhiều điểm chung với nhiều lĩnh vực trong các ngành khoa học vật lý, đáng chú ý là việc khảo sát những hệ quả logic của các giả định. Trực giác và hoạt động thực nghiệm cũng đóng một vai trò trong việc xây dựng nên các giả thuyết trong toán học lẫn trong những ngành khoa học (khác). Toán học thực nghiệm ngày càng được chú ý trong bản thân ngành toán học, và việc tính toán và mô phỏng đang đóng vai trò ngày càng lớn trong cả khoa học lẫn toán học.

Ý kiến của các nhà toán học về vấn đề này không thống nhất. Một số cảm thấy việc gọi toán học là khoa học làm giảm tầm quan trọng của khía cạnh thẩm mỹ của nó, và lịch sử của nó trong bảy môn khai phóng truyền thống; một số người khác cảm thấy rằng bỏ qua mối quan hệ giữa toán học và các ngành khoa học là cố tình làm ngơ trước thực tế là sự tương tác giữa toán học và những ứng dụng của nó trong khoa học và kỹ thuật đã là động lực chính của những phát triển trong toán học. Sự khác biệt quan điểm này bộc lộ trong cuộc tranh luận triết học về chuyện toán học "được tạo ra" (như nghệ thuật) hay "được khám phá ra" (như khoa học). Các viện đại học thường có một trường hay phân khoa "khoa học và toán học".[41] Cách gọi tên này ngầm ý rằng khoa học và toán học gần gũi với nhau nhưng không phải là một.

0
Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).Cụm từ "số học" cũng được...
Đọc tiếp

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).

Cụm từ "số học" cũng được sử dụng để nói đến lý thuyết số. Đây là cụm từ không còn được sử dụng rộng rãi nữa. Tuy nhiên, nó vẫn còn hiện diện trong tên của một số lĩnh vực toán học (hàm số học, số học đường cong elliptic, lý thuyết căn bản của số học). Việc sử dụng cụm từ số học ở đây không nên nhầm lẫn với số học sơ cấp.

Mục lục

1Các lĩnh vực

1.1Lý thuyết số sơ cấp

1.2Lý thuyết số giải tích

1.3Lý thuyết số đại số

1.4Lý thuyết số hình học

1.5Lý thuyết số tổ hợp

1.6Lý thuyết số máy tính

2Lịch sử

2.1Lý thuyết số thời kì Vedic

2.2Lý thuyết số của người Jaina

2.3Lý thuyết số Hellenistic

2.4Lý thuyết số Ấn Độ cổ điển

2.5Lý thuyết số của người Hồi giáo

2.6Lý thuyết số châu Âu ban đầu

2.7Mở đầu lý thuyết số hiện đại

2.8Lý thuyết số về số nguyên tố

2.9Các thành tựu trong thế kỉ 19

2.10Các thành tựu trong thế kỉ 20

3Danh ngôn

4Tham khảo

5Liên kết ngoài

Các lĩnh vực[sửa | sửa mã nguồn]

Lý thuyết số sơ cấp[sửa | sửa mã nguồn]

Trong lý thuyết số sơ cấp, các số nguyên được nghiên cứu mà không cần các kĩ thuật từ các lĩnh vực khác của toán học. Nó nghiên cứu các vấn đề về chia hết, cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất, phân tích số nguyên thành thừa số nguyên tố, việc nghiên cứu các số hoàn thiện và đồng dư.

Rất nhiều vấn đề trong lý thuyết số có thể phát biểu dưới ngôn ngữ sơ cấp, nhưng chúng cần những nghiên cứu sâu sắc và những tiếp cận mới bên ngoài lĩnh vực lý thuyết số để giải quyết.

Một số ví dụ:

Giả thuyết Goldbach nói về việc biểu diễn các số chẵn thành tổng của hai số nguyên tố.

Giả thuyết Catalan (bây giờ là định lý Mihăilescu) nói về các lũy thừa nguyên liên tiếp.

Giả thuyết số nguyên tố sinh đôi nói rằng có vô hạn số nguyên tố sinh đôi

Giả thuyết Collazt nói về một dãy đệ quy đơn giản

Định lý lớn Fermat (nêu lên vào năm 1637, đến năm 1994 mới được chứng minh) nói rằng phương trình {\displaystyle x^{n}+y^{n}=z^{n}}📷 không có nghiệm nguyên khác không với n lớn hơn 2.

Lý thuyết về phương trình Diophantine thậm chí đã được chứng minh là không có phương pháp chung đề giải (Xem Bài toán thứ 10 của Hilbert)

Lý thuyết số giải tích[sửa | sửa mã nguồn]

Lý thuyết giải tích số sử dụng công cụ giải tích và giải tích phức để giải quyết các vần đề về số nguyên. Định lý số nguyên tố và giả thuyết Riemann là các ví dụ. Bài toán Waring(biểu diễn một số nguyên cho trước thành tổng các bình phương, lập phương, v.v...), giả thuyết số nguyên tố sinh đôi và giả thuyết Goldbach cũng đang bị tấn công bởi các phương pháp giải tích. Chứng minh về tính siêu việt của các hằng số toán học, như là π hay e, cũng được xếp vào lĩnh vực lý thuyết giải tích số. Trong khi những phát biểu về các số siêu việt dường như đã bị loại bỏ khỏi việc nghiên cứu về các số nguyên, chúng thực sự nghiên cứu giá trị của các đa thức với hệ số nguyên tại, ví dụ, e; chúng cũng liên quan mật thiết với lĩnh vực xấp xỉ Diophantine, lĩnh vực nghiên cứu một số thực cho trước có thể xấp xỉ bởi một số hữu tỉ tốt tới mức nào.

Lý thuyết số đại số[sửa | sửa mã nguồn]

Trong Lý thuyết số đại số, khái niệm của một số được mở rộng thành các số đại số, tức là các nghiệm của các đa thức với hệ số nguyên. Những thứ này bao gồm những thành phần tương tự với các số nguyên, còn gọi là số nguyên đại số. Với khái niệm này, những tính chất quen thuộc của số nguyên (như phân tích nguyên tố duy nhất) không còn đúng. Lợi thế của những công cụ lý thuyết - Lý thuyết Galois, group cohomology, class field theory, biểu diễn nhóm và hàm L - là nó cho phép lấy lại phần nào trật tự của lớp số mới.

Rất nhiều vấn đề lý thuyết số có thể được giải quyết một cách tốt nhất bởi nghiên cứu chúng theo modulo p với mọi số nguyên tố p (xem các trường hữu hạn). Đây được gọi là địa phương hóa và nó dẫn đến việc xây dựng các số p-adic; lĩnh vực nghiên cứu này được gọi là giải tích địa phương và nó bắt nguồn từ lý thuyết số đại sô.

Lý thuyết số hình học[sửa | sửa mã nguồn]

Lý thuyết số hình học (cách gọi truyền thống là (hình học của các số) kết hợp tất cả các dạng hình học. Nó bắt đầu với định lý Minkowski về các điểm nguyên trong các tập lồi và những nghiên cứu về sphere packing.

Lý thuyết số tổ hợp[sửa | sửa mã nguồn]

Lý thuyết số tổ hợp giải quyết các bài toán về lý thuyết số mà có tư tưởng tổ hợp trong công thức hoặc cách chứng minh của nó. Paul Erdős là người khởi xướng chính của ngành lý thuyết số này. Những chủ đề thông thường bao gồm hệ bao, bài toán tổng-zero, rất nhiều restricted sumset và cấp số cộng trong một tập số nguyên. Các phương pháp đại số hoặc giải tích rất mạnh trong những lĩnh vực này.

Lý thuyết số máy tính[sửa | sửa mã nguồn]

Lý thuyết số máy tính nghiên cứu các thuật toán liên quan đến lý thuyết số. Những thuật toán nhanh chóng để kiểm tra tính nguyên tố và phân tích thừa số nguyên tố có những ứng dụng quan trọng trong mã hóa.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết số thời kì Vedic[sửa | sửa mã nguồn]

Các nhà toán học Ấn Độ đã quan tâm đến việc tìm nghiệm nguyên của phương trình Diophantine từ thời kì Vedic. Những ứng dụng sớm nhất vào hình học của phương trình Diophantine có thể tìm thấy trong kinh Sulba, được viết vào khoảng giữa thế kỉ thứ 8 và thế kỉ thứ 6 trước Công nguyên. Baudhayana (năm 800 TCN) tìm thấy hai tập nghiệm nguyên dương của một hệ các phương trình Diophantine, và cũng sử dụng hệ phương trình Diophantine với tới bốn ẩn. Apastamba (năm 600) sử dụng hệ phương trình Diophantine với tới năm ẩn.

Lý thuyết số của người Jaina[sửa | sửa mã nguồn]

Ở Ấn Độ, các nhà toán học Jaina đã phát triển lý thuyết số có hệ thống đầu tiên từ thế kỉ thứ 4 trước Công Nguyên tới thế kỉ thứ 2. Văn tự Surya Prajinapti (năm 400 TCN) phân lớp tất cả các số thành ba tập: đếm được, không đếm được và vô hạn. Mỗi tập này lại được phân thành ba cấp:

Đếm được: thấp nhất, trung bình, và cao nhất.

Không đếm được: gần như không đếm được, thật sự không đếm được, và không đếm được một cách không đếm được.

Vô hạn: gần như vô hạn, thật sự vô hạn, vô hạn một cách vô hạn

Những người Jain là những người đầu tiên không chấp nhận ý tưởng các vô hạn đều như nhau. Họ nhận ra năm loại vô hạn khác nhau: vô hạn theo một hoặc hai hướng (một chiều), vô hạn theo diện tích (hai chiều), vô hạn mọi nơi (ba chiều), và vô hạn liên tục (vô số chiều).

Số đếm được cao nhất N của người Jain tương ứng với khái niệm hiện đại aleph-không {\displaystyle \aleph _{0}}📷 (cardinal number của tập vô hạn các số nguyên 1,2,...), the smallest cardinal transfinite number. Người Jain cũng định nghĩa toàn bộ hệ thống các cardinal number, trong đó {\displaystyle \aleph _{0}}📷 là nhỏ nhất.

Trong công trình của người Jain về lý thuyết tập hợp, họ phân biệt hai loại transfinite number cơ bản. Ở cả lĩnh vực vật lý và bản thể học (ontology), sự khác nhau được tạo ra giữa asmkhyata và ananata, giữa vô hạn bị chặn ngặt và vô hạn bị chặn lỏng.

Lý thuyết số Hellenistic[sửa | sửa mã nguồn]

Lý thuyết số là một đề tài ưa thích của các nhà toán học Hellenistic ở Alexandria, Ai Cập từ thế kỉ thứ 3 sau Công Nguyên. Họ đã nhận thức được khái niệm phương trình Diophantine trong rất nhiều trường hợp đặc biệt. Nhà toán học Hellenistic đầu tiên nghiên cứu những phương trình này là Diophantus.

Diophantus cũng đã tìm kiếm một phương pháp để tìm nghiệm nguyên của các phương trình vô định tuyến tính, những phương trình mà thiếu điều kiện đủ để có một tập duy nhất các nghiệm phân biệt. Phương trình {\displaystyle x+y=5}📷 là một phương trình như vậy. Diophantus đã khám phá ra nhiều phương trình vô định có thể biến đổi thành các dạng đã biết mặc dù thậm chí còn không biết được nghiệm cụ thể.

Lý thuyết số Ấn Độ cổ điển[sửa | sửa mã nguồn]

Phương trình Diophantine đã được nghiên cứu một cách sâu sắc bởi các nhà toán học Ân Độ trung cổ. Họ là những người đầu tiên nghiên cứu một cách có hệ thống các phương pháp tìm nghiệm nguyên của phương trình Diophantine. Aryabhata (499) là người đầu tiên tìm ra dạng nghiệm tổng quát của phương trình Diophantine tuyến tính {\displaystyle ay+bx=c}📷, được ghi trong cuốn Aryabhatiya của ông. Thuật toán kuttaka này được xem là một trong những cống hiến quan trọng nhất của Aryabhata trong toán học lý thuyết, đó là tìm nghiệm của phương trình Diophantine bằng liên phân số. Aryabhata đã dùng kĩ thuật này để tìm nghiệm nguyên của các hệ phương trình Diophantine, một bài toán có ứng dụng quan trọng trong thiên văn học. Ông cũng đã tìm ra nghiệm tổng quát đối với phương trình tuyến tính vô định bằng phương pháp này.

Brahmagupta vào năm 628 đã nắm được những phương trình Diophantine phức tạp hơn. Ông sử dụng phương pháp chakravala để giải phương trình Diophantine bậc hai, bao gồm cả các dạng của phương trình Pell, như là {\displaystyle 61x^{2}+1=y^{2}}📷. Cuốn Brahma Sphuta Siddhanta của ông đã được dịch sang tiếng Ả Rập vào năm 773 và sau đó được dịch sang tiếng Latin vào năm 1126. Phương trình {\displaystyle 61x^{2}+1=y^{2}}📷 sau đó đã được chuyển thành một bài toán vào năm 1657 bởi nhà toán học người Pháp Pierre de Fermat. Leonhard Euler hơn 70 năm sau đã tìm được nghiệm tổng quát đối với trường hợp riêng này của phương trình Pell, trong khi nghiệm tổng quát của phương trình Pell đã được tìm ra hơn 100 năm sau đó bởi Joseph Louis Lagrange vào 1767. Trong khi đó, nhiều thế kỉ trước, nghiệm tổng quát của phương trình Pell đã được ghi lại bởi Bhaskara II vào 1150, sử dụng một dạng khác của phương pháp chakravala. Ông cũng đã sử dụng nó để tìm ra nghiệm tổng quát đối với các phương trình vô định bậc hai và phương trình Diophantine bậc hai khác. Phương pháp chakravala của Bhaskara dùng để tìm nghiệm phương trình Pell đơn giản hơn nhiều so với phương pháp mà Lagrange sử dụng 600 năm sau đó. Bhaskara cũng đã tìm được nghiệm của các phương trình vô định bậc hai, bậc ba, bốn và cao hơn. Narayana Pandit đã cải tiến phương pháp chakravala và tìm thêm được các nghiệm tổng quát hơn đối với các phương trình vô định bậc hai và cao hơn khác.

Lý thuyết số của người Hồi giáo[sửa | sửa mã nguồn]

Từ thế kỉ 9, các nhà toán học Hồi giáo đã rất quan tâm đến lý thuyết số. Một trong những nhà toán học đầu tiên này là nhà toán học Ả Rập Thabit ibn Qurra, người đã khám phá ra một định lý cho phép tìm các cặp số bạn bè, tức là các số mà tổng các ước thực sự của số này bằng số kia. Vào thế kỉ 10, Al-Baghdadi đã nhìn vào một ít biến đổi trong định lý của Thabit ibn Qurra.

Vào thế kỉ 10, al-Haitham có thể là người đầu tiên phân loại các số hoàn hảo chẵn (là các số mà tổng các ước thực sự của nó bằng chính nó) thành các số có dạng {\displaystyle 2^{k-1}(2^{k}-1)}📷trong đó {\displaystyle 2^{k}-1}📷 là số nguyên tố. Al-Haytham cũng là người đầu tiên phát biểu định lý Wilson (nói rằng p là số nguyên tố thì {\displaystyle 1+(p-1)!}📷 chia hết cho p). Hiện không rõ ông ta có biết cách chứng minh nó không. Định lý có tên là định lý Wilson vì căn cứ theo một lời chú thích của Edward Waring vào năm 1770 rằng John Wilson là người đầu tiên chú ý đến kết quả này. Không có bằng chứng nào chứng tỏ John Wilson đã biết cách chứng minh và gần như hiển nhiên là Waring cũng không. Lagrange đã đưa ra chứng minh đầu tiên vào 1771.

Các số bạn bè đóng vai trò quan trọng trong toán học của người Hồi giáo. Vào thế kỉ 13, nhà toán học Ba Tư Al-Farisi đã đưa ra một chứng minh mới cho định lý của Thabit ibn Qurra, giới thiệu một ý tưởng mới rất quan trọng liên quan đến phương pháp phân tích thừa số và tổ hợp. Ông cũng đưa ra cặp số bạn bè 17296, 18416 mà người ta vẫn cho là của Euler, nhưng chúng tao biết rằng những số này còn được biết đến sớm hơn cả al-Farisi, có thể bởi chính Thabit ibn Qurra. Vào thế kỉ 17, Muhammad Baqir Yazdi đưa ra cặp số bạn bè 9.363.584 và 9.437.056 rất nhiều năm trước khi Euler đưa ra.

Lý thuyết số châu Âu ban đầu[sửa | sửa mã nguồn]

Lý thuyết số bắt đầu ở Châu Âu vào thế kỉ 16 và 17, với François Viète, Bachet de Meziriac, và đặc biệt là Fermat, mà phương pháp lùi vô hạn của ông là chứng minh tổng quát đầu tiên của phương trình Diophantine. Định lý lớn Fermat được nêu lên như là một bài toán vào năm 1637, và không có lời giải cho đến năm 1994. Fermat cũng nêu lên bài toán {\displaystyle 61x^{2}+1=y^{2}}📷 vào năm 1657.

Vào thế kỉ 18, Euler và Lagrange đã có những cống hiến quan trọng cho lý thuyết số. Euler đã làm một vài công trình về lý thuyết giải tích số, và tình được một nghiệm tổng quát của phương trình {\displaystyle 61x^{2}+1=y^{2}}📷, mà Fermat nêu thành bài toán. Lagrange đã tìm được một nghiệm của phương trình Pell tổng quát hơn. Euler và Lagrange đã giải những phương trình Pell này bằng phương pháp liên phân số, mặc dù nó còn khó hơn phương pháp chakravala của Ấn Độ.

Mở đầu lý thuyết số hiện đại[sửa | sửa mã nguồn]

Khoảng đầu thế kỉ 19 các cuốn sách của Legendre (1798), và Gauss kết hợp thành những lý thuyết có hệ thống đầu tiên ở châu Âu. Cuốn Disquisitiones Arithmeticae (1801) có thể nói là đã mở đầu lý thuyết số hiện đại.

Sự hình thành lý thuyết đồng dư bắt đầu với cuốn Disquisitiones của Gauss. Ông giới thiệu ký hiệu

{\displaystyle a\equiv b{\pmod {c}},}📷

và đã khám phá ra hầu hết trong lĩnh vực này. Chebyshev đã xuất bản vào năm 1847 một công trình bằng tiếng Nga về chủ đề này, và ở Pháp Serret đã phổ biến nó.

Bên cạnh những công trình tổng kết trước đó, Legendre đã phát biểu luật tương hỗ bậc hai. Định lý này, được khám phá ra bởi qui nạp và được diễn đạt bởi Euler, đã được chứng minh lần đầu tiên bởi Legendre trong cuốn Théorie des Nombres của ông (1798) trong những trường hợp đặc biệt. Độc lập với Euler và Legendre, Gauss đã khám phá ra định luật này vào khoảng năm 1795, và là người đầu tiên đưa ra chứng minh tổng quát. Những người cũng có cống hiến quan trọng: Cauchy; Dirichlet với cuốn Vorlesungen über Zahlentheorie kinh điển; Jacobi, người đã đưa ra ký hiệu Jacobi; Liouville, Zeller (?), Eisenstein, Kummer, và Kronecker. Lý thuyết này đã được mở rộng để bao gồm biquadratic reciprocity (Gauss, Jacobi những người đầu tiên chứng minh luật tương hỗ bậc ba, và Kummer).

Gauss cũng đã đưa ra biểu diễn các số thành các dạng bậc hai cơ số hai.

Lý thuyết số về số nguyên tố[sửa | sửa mã nguồn]

Một chủ đề lớn và lặp đi lặp lại trong lý thuyết số đó là nghiên cứu về sự phân bố số nguyên tố. Carl Fiedrich Gauss đã dự đoán kết quả của định lý số nguyên tố khi còn là học sinh trung học.

Chebyshev (1850) đưa ra các chặn cho số số nguyên tố giữa hai giới hạn cho trước. Riemann giới thiệu giải tích phức thành lý thuyết về hàm zeta Riemann. Điều này đã dẫn đến mối quan hệ giữa các số không của hàm zeta và sự phân bố số nguyên tố, thậm chí dẫn tới một chứng minh cho định lý số về số nguyên tố độc lập với Hadamard và de la Vallée Poussin vào năm 1896. Tuy nhiên, một chứng minh sơ cấp đã được đưa ra sau đó bởi Paul Erdős và Atle Selberg vào năm 1949. Ở đây sơ cấp nghĩa là không sử dụng kĩ thuật giải tích phức; tuy nhiên chứng minh vẫn rất đặc biệt và rất khó. Giả thuyết Riemann, đưa ra những thông tin chính xác hơn, vẫn còn là một câu hỏi mở.

Các thành tựu trong thế kỉ 19[sửa | sửa mã nguồn]

Cauchy, Pointsot (1845), Lebesgue (1859, 1868) và đặc biệt là Hermite đã có những cống hiến đối với lĩnh vực này. Trong lý thuyết về các ternary form Eisenstein đã trở thành người đi đầu, và với ông và H. J. S. Smith đó đúng là một bước tiến quan trọng trong lý thuyết về các dạng. Smith đã đưa ra một sự phân loại hoàn chỉnh về các ternary form bậc hai, và mở rộng những nghiên cứu của Gauss về các dạng bậc hai thực (real quadratic form) thành các dạng phức (complex form). Những nghiên cứu về biểu diễn các số thành tổng của 4, 5, 6, 6, 8 bình phương đã được phát triển bởi Eisenstein và lý thuyết này đã được hoàn chỉnh bởi Smith.

Dirichlet là người đầu tiên thuyết trình về lĩnh vực này ở một trường đại học ở Đức. Một trong những cống hiến của ông là sự mở rộng của Định lý lớn Fermat:

{\displaystyle x^{n}+y^{n}\neq z^{n},(x,y,z\neq 0,n>2)}📷

mà Euler và Legendre đã chứng minh cho n = 3, 4 (và từ đó suy ra cho các bội của 3 và 4). Dirichlet đã chỉ ra rằng:{\displaystyle x^{5}+y^{5}\neq az^{5}}📷. Một số nhà toán học Pháp là Borel, Poincaré, những hồi ký của họ rất lớn và có giá trị; Tannery và Stieltjes. Một số người có những cống hiến hàng đầu ở Đức là Kronecker, Kummer, Schering, Bachmann, và Dedekind. Ở Austria cuốn Vorlesungen über allgemeine Arithmetik của Stolz (1885-86) và ở Anh cuốn Lý thuyết số của Mathew (Phần I, 1892) là các công trình tổng quát rất có giá trị. Genocchi, Sylvester, và J. W. L. Glaisher cũng đã có những cống hiến cho lý thuyết này.

Các thành tựu trong thế kỉ 20[sửa | sửa mã nguồn]

Những nhà toán học lớn trong lý thuyết số thế kỉ 20 bao gồm Paul Erdős, Gerd Faltings, G. H. Hardy, Edmund Landau, John Edensor Littlewood, Srinivasa Ramanujan và André Weil.

Các cột mốc trong lý thuyết số thế kỉ 20 bao gồm việc chứng minh Định lý lớn Fermat bởi Andrew Wiles vào năm 1994 và chứng minh Giả thuyết Taniyama–Shimura vào năm 1999

Danh ngôn[sửa | sửa mã nguồn]

Toán học là nữ hoàng của các khoa học và lý thuyết số là nữ hoàng của toán học. — Gauss

Chúa sinh ra các số nguyên, và phần việc còn lại là của con người. — Kronecker

Tôi biết các con số rất đẹp đẽ. Nếu chúng không đẹp, thì chẳng có thứ gì đẹp.— Erdős

0