Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
\(x-y=9\Rightarrow x=9+y\Rightarrow y=x-9\)
Ta có:
\(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)
\(=\dfrac{3x+x-9}{3x+y}-\dfrac{3y+y+9}{3y+x}\)
\(=\dfrac{3x+\left(x-9\right)}{3x+y}-\dfrac{3y+\left(y+9\right)}{3y+x}\)
\(=\dfrac{3x+y}{3x+y}-\dfrac{3y+x}{3y+x}\)
\(=1-1\)
\(=0\)
Vậy biểu thức \(\dfrac{4x-9}{3x+y}-\dfrac{4y+9}{3y+x}\)khi \(x-y=9\) là 0
\(x-y=9\Rightarrow y=x-9\) thay vào biểu thức B ta được :
\(B=\dfrac{4x-9}{3x+\left(x-9\right)}-\dfrac{4\left(x-9\right)+9}{3\left(x-9\right)+x}=\dfrac{4x-9}{4x-9}-\dfrac{4x-27}{4x-27}=1-1=0\)
Vậy giá trị của B là 0 tại \(x-y=9\)
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
Ta có:
(22x + 3y) - (12x - 7y) = 1 - (-9)
22x + 3y - 12x + 7y = 1+ 9
10x + 10y = 10
10 (x + y) = 10
x + y = 10 : 10 = 1
=> Trung bình cộng của x và y bằng 1 : 2 = 0.5
=1+\(\dfrac{1}{2}\).3+\(\dfrac{1}{3}\).6+\(\dfrac{1}{4}\).10+....+\(\dfrac{1}{16}\).136
= 1+\(\dfrac{3}{2}\)+2+\(\dfrac{5}{2}\)+..+\(\dfrac{17}{2}\)
=(1+2+...+8)+(\(\dfrac{3}{2}\)+\(\dfrac{5}{2}\)+..+\(\dfrac{17}{2}\))
= 36+40=76
Để biểu thức P đạt giá trị lớn nhất thì mẫu phải đạt GTNN.
\(\Rightarrow5+x^2\) phải nhỏ nhất
\(\Rightarrow x^2\) phải nhỏ nhất
mà \(x^2\ge0\)
\(\Rightarrow x^2\) nhỏ nhất là bằng 0
\(\Rightarrow x=0\)
Vậy thì tick cho mik nhé!!!
Có:\(\dfrac{x}{y}=\dfrac{2}{3}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}\)
\(\dfrac{x}{3}=\dfrac{z}{5}\Rightarrow\dfrac{x}{6}=\dfrac{x}{10}\)
\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{9}=\dfrac{z}{10}\Rightarrow\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}\)
và \(x^2+y^2+z^2=\dfrac{217}{4}\)
Áp dụng t/c của dãy tỉ số = nhau ta có:
\(\dfrac{x^2}{36}=\dfrac{y^2}{81}=\dfrac{z^2}{100}=\dfrac{x^2+y^2+z^2}{36+81+100}=\dfrac{217}{\dfrac{4}{217}}=\dfrac{217}{4.217}=0,25\)
\(\Rightarrow\left[{}\begin{matrix}x^2=9\\y^2=20,25\\z^2=25\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\y=4,5\\z=5\end{matrix}\right.\)
(mk chỉ lấy x,y,z t/m đề thoy)
\(\Rightarrow x+2y-2z=3+2\cdot4,5-2\cdot5=2\)
Vậy............................
Có: \(\dfrac{a}{3}=\dfrac{b}{5}\)
\(=\dfrac{3a}{3.3}=\dfrac{b}{5}\)
\(=\dfrac{3a}{9}=\dfrac{b}{5}=\dfrac{3a+b}{9+5}=\dfrac{2}{14}=\dfrac{1}{7}\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{1}{7}\Rightarrow a=\dfrac{\left(1.3\right)}{7}=\dfrac{3}{7}\)
Vậy số a thỏa mãn là \(\dfrac{3}{7}\)
Tick nha!!!
a: Xét ΔABC có I là giao điểm của hai đườg phân giác góc B và góc C
nên AI là tia phân giác của góc BAC
b: \(\widehat{BAC}=180^0-70^0-50^0=60^0\)
\(\widehat{IBC}+\widehat{ICB}=\dfrac{70^0+50^0}{2}=60^0\)
nên \(\widehat{BIC}=120^0\)