K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DH
Đỗ Hoàn
CTVHS VIP
15 tháng 8

bạn đăng lại câu hỏi của bạn nhé, câu hỏi của bạn bị lỗi rồi

14 tháng 8

cô Hoài có khá nhiều việc nên cô từ từ mới thấy tin nhắn của bạn nhé

14 tháng 8

đúng rồi bạn chờ đi kiểu j cô hoài củng trả lời mà

11 tháng 8

Câu này đã hiển thị, em nhé.

em chưa thấy T-T

13 tháng 2 2022

-Để mình suy nghĩ ngồi làm cho bạn nhé.

13 tháng 2 2022

-Vì bài dài quá nên mình nói tóm tắt:

a) -Bạn chứng minh △ABM = △BCN (g-c-g) do có \(AB=BC\) , \(\widehat{BCN}=\widehat{ABM}=90^0\),\(\widehat{NBC}=\widehat{MAB}\) (bạn tự chứng minh).

-Suy ra: \(BM=CN\) .

-Suy ra 2 điều:

+\(QM^2-BQ^2=MN^2-MC^2\)

+\(QM+BQ=MN+MC\) (1)

\(QM^2-BQ^2=MN^2-MC^2\)

\(\Rightarrow\left(QM-BQ\right)\left(QM+BQ\right)=\left(MN-MC\right)\left(MN+MC\right)\)

\(\Rightarrow QM-BQ=MN-MC\) (2)

-Từ (1),(2) suy ra \(QM=MN\) nên △BMQ=△CNM (ch-cgv).

\(\Rightarrow\) MQ vuông góc với MN (bạn tự c/m).

\(QM=MN\) nên \(BQ=MC\) nên \(AQ=BM\Rightarrow PQ^2-AP^2=QM^2-BQ^2;QM+BQ=PQ+AP\)

Nên \(PQ=QM;\Delta APQ=\Delta BQM\) nên PQ⊥QM ; AP=BQ nên PQ=AQ

-Từ PQ=AQ bạn tự c/m PN=PQ (theo sườn mình đã cho) rồi sau đó c/m tam giác APQ=tam giác DNP rồi từ đó suy ra PQ vuông góc PN

.......

 

13 tháng 9 2020

Dung à mày (:

Ta có \(\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a}{x+1}+\frac{b}{\left(x+1\right)^2}+\frac{c}{x+2}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a\left(x+1\right)\left(x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{b\left(x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{c\left(x+1\right)^2}{\left(x+1\right)^2\left(x+2\right)}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{a\left(x^2+3x+2\right)}{\left(x+1\right)^2\left(x+2\right)}+\frac{bx+2b}{\left(x+1\right)^2\left(x+2\right)}+\frac{c\left(x^2+2x+1\right)}{\left(x+1\right)^2\left(x+2\right)}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{ax^2+3ax+2a+bx+2b+cx^2+2cx+c}{\left(x+1\right)^2\left(x+2\right)}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)^2\left(x+2\right)}=\frac{x^2\left(a+c\right)+x\left(3a+b+2c\right)+\left(2a+2b+c\right)}{\left(x+1\right)^2\left(x+2\right)}\)

\(\Rightarrow1=x^2\left(a+c\right)+x\left(3a+b+2c\right)+\left(2a+2b+c\right)\)

Đồng nhất hệ số ta được :

\(\hept{\begin{cases}a+c=0\\3a+b+2c=0\\2a+2b+c=1\end{cases}}\)=> Chịu :)) Khó quá không làm được ... Hoặc do đề sai ;-;

13 tháng 9 2020

Không sai == Trong sách Nâng cao và phát triển toán 8 tập 1 trang 33 bài 123 ý c

T cũng chịu '-'

12 tháng 10 2020

Sao lạ thế nhỉ, áp cái được luôn?

\(2a+\frac{b}{a}+\frac{c}{b}\ge3\sqrt[3]{2a.\frac{b}{a}.\frac{c}{b}}=3\sqrt[3]{2c}\)

Đẳng thức tự xét.

18 tháng 10 2020
RD
TOI LOVE  
  
  
  
  
12 tháng 11 2016

<!> là gì vậy ak? 

12 tháng 11 2016

tôi nghĩ là giao thừa