K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tham khảo: 

VD1:

- Theo phương pháp luận biện chứng: thi dưới tác dung lực cơ học thi sau khi viết viên phấn sẽ bị mài mòn đi không còn hình dạng như trước nữa. Dưới tác dụng hoá học sẽ bị ăn mòn dần ... nên theo thời gian viên phấn sẽ không còn như trước nữa.

- Theo phương pháp luận siêu hình: thì dù bao lâu đi nữa thi viên phấn đó vẫn luôn tồn tai như thế không thay đổi

VD2:

- Theo phương pháp luận biện chứng: người ta biết tại sao mưa vì người ta đã nghiên cứu và biết được.

- Theo phương pháp luận siêu hình: người ta tin rằng mưa là do thượng đế phái rồng phun nước

24 tháng 12 2021

đúng rồi

6 tháng 5 2021

Ban can cau nao nhi?

23 tháng 5 2021

làm bài nào??

25 tháng 9 2016

ω=3

A=5

v=vmax=ωA=3.5=15 cm/s

7 tháng 9 2023

adu để em giúp

 

7 tháng 9 2023

Để tính quãng đường đi được từ thời điểm t1 đến t2 cho vật giao động điều hòa dọc theo trục Ox, ta cần tính diện tích dưới đường cong x(t) trong khoảng thời gian từ t1 đến t2.

Trước tiên, chúng ta sẽ tính x(t) tại t1 và t2:

Tại t1 = 13/6 s: x(t1) = 3 * cos(4 * 3.14 - (3.14 / 3)) cm

Tại t2 = 23/6 s: x(t2) = 3 * cos(4 * 3.14 - (3.14 / 3)) cm

Tiếp theo, chúng ta cần tính diện tích dưới đường cong trong khoảng từ t1 đến t2. Để làm điều này, ta sẽ tính diện tích của hình giữa đồ thị và trục Ox trong khoảng từ t1 đến t2.

Diện tích A = ∫(t1 đến t2) x(t) dt

A = ∫(13/6 đến 23/6) [3 * cos(4 * 3.14 - (3.14 / 3))] dt

A = ∫(13/6 đến 23/6) [3 * cos(4 * 3.14 - 3.14/3)] dt

A = ∫(13/6 đến 23/6) [3 * cos(4 * 3.14 - 3.14/3)] dt

A = ∫(13/6 đến 23/6) [3 * cos(12.56 - 1.0467)] dt

A = ∫(13/6 đến 23/6) [3 * cos(11.5133)] dt

Giải tích phần này trở nên phức tạp, nhưng bạn có thể tính toán nó bằng máy tính hoặc phần mềm tính toán. Kết quả sẽ là diện tích A, tức là quãng đường đi được từ t1 đến t2.

(em thay pi=3,14 luôn nha anh )

thưa thầy em mới biết thêm được phương pháp dùng vecto trượt giải toán điện xoay chiều ( hay nói cách khác là nối vecto)làm một số dạng bài tập có sử dụng phương pháp này, em làm thêm cách giản đồ vecto thông thường để so sánh và rút ra 1 số vấn đề:- cả 2 cách đều ra kết quả như nhau chỉ khác về hình vẽ nên tính toán sẽ khác- dùng vecto trượt nhanh hơn đôi chút, phần hình và tính...
Đọc tiếp

thưa thầy em mới biết thêm được phương pháp dùng vecto trượt giải toán điện xoay chiều ( hay nói cách khác là nối vecto)

làm một số dạng bài tập có sử dụng phương pháp này, em làm thêm cách giản đồ vecto thông thường để so sánh và rút ra 1 số vấn đề:

- cả 2 cách đều ra kết quả như nhau chỉ khác về hình vẽ nên tính toán sẽ khác

- dùng vecto trượt nhanh hơn đôi chút, phần hình và tính toán dễ dàng hơn ( trong 1 số bài phức tạp)

- tuy nhiên đối với một số bài có tính chặt chẽ  thì dùng vecto trượt có thể dẫn đến kết quả sai (do chưa biết được Zl và Zc cái nào lớn hơn để vẽ)

vậy em muốn hỏi thầy là dạng bài tập nào dùng giản đồ thông thường cũng ra được kết quả đúng không ạ?

và có dấu hiệu nào để biết là nên dùng phương pháp vecto trượt hay dùng giản đồ thông thường không ạ? đọc vào đề bài em thấy hơi phân vân không biết nên dùng 

cách nào hợp lí nhất. mong thầy chỉ giúp em ạ.

2
9 tháng 10 2015

Điện xoay chiều thú vị ở chỗ đó, chúng ta có thể dùng biến đổi đại số, dùng giản đồ véc tơ (tạm gọi là véc tơ thường - véc tơ buộc và véc tơ trượt), ngoài ra còn có thể dùng số phức để giải. Tùy từng bài toán và tùy từng kinh nghiệm của mỗi người thì sẽ biết nên làm theo cách nào cho hợp lí. Em hãy cứ làm nhiều bài tập điện xoay chiều thì em sẽ nhận ra điều đó.

Dùng giản đồ véc tơ thường thì hầu như dạng bài tập nào cũng giải được.

Còn véc tơ trượt là một biến thể của véc tơ thường (dựa vào tính chất cộng véc tơ trong toán học), làm cho hình vẽ đỡ rối hơn.

Còn nên dùng theo cách nào thì như mình nói tùy từng bài toán và kinh nghiệm của mỗi người. Kinh nghiệm của mình là những bài toán mà cho mối liên hệ các điện áp chéo nhau (VD: URL, URC,...) thì dùng véc tơ thường, trường hợp còn lại thì dùng véc tơ trượt.

9 tháng 10 2015

vâng em cảm ơn thầy ạ.