Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
a) Vì A: B:C:D = 1:2:3:4
=> A= B/2 = C/3=D/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A = 36 độ
B= 72 độ
C=108 độ
D= 144 độ
b) Ta có :
A + D = 36 + 144 = 180 độ(1)
B+C = 72 + 108 = 180 độ(2)
Từ (1) và (2) ta có:
=> AB //CD (dpcm)
c) Ta có :
CDE + ADC = 180 độ(kề bù)
=> CDE = 180 - 144 = 36
Ta có :
BCD + DCE = 180 độ ( kề bù)
=> DCE = 180 - 108 = 72
Xét ∆CDE ta có :
CDE + DCE + DEC = 180 ( tổng 3 góc trong ∆)
=> DEC = 180 - 72 - 36 = 72 độ
Bài 2)
a) Ta có ABCD có :
A + B + C + D = 360 độ
Mà C = 80 độ
D= 70 độ
=> A+ B = 360 - 80 - 70 = 210 độ
Ta có AI là pg góc A
BI là pg góc B
=> DAI = BAI = A/2
=> ABI = CBI = B/2
=> BAI + ABI = A + B /2
=> BAI + ABI = 210/2 = 105
Xét ∆IAB ta có :
IAB + ABI + AIB = 180 độ
=> AIB = 180 - 105
=> AIB = 75 độ
=>
1: Xét tứ giác ABCD có góc ABC+góc ADC=180 độ
nên ABCD là tứ giác nội tiếp
=>góc CDB=góc CAB và góc CBD=góc DAC
mà góc CAB=góc DAC
nên góc CDB=góc CBD
hay ΔCBD cân tại C
A B C D O
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
-Ta có: AE+EB>AB=a (bất đẳng thức trong tam giác AEB)
DE+EC>DC=c (bất đẳng thức trong tam giác DEC)
AE+DE>AD=d (bất đẳng thức trong tam giác AED)
BE+EC>BC=b (bất đẳng thức trong tam giác BEC)
=> AE+EB+DE+EC+AE+DE+BE+EC>a+b+c+d.
=> AC+BD+AC+BD>a+b+c+d.
=> 2(AC+BD)>a+b+c+d
=> AC+BD >\(\dfrac{a+b+c+d}{2}\)(1)
Ta có: AC<AB+BC=a+b (bất đẳng thức trong tam giác ABC)
AC<AD+DC=c+d (bất đẳng thức trong tam giác ADC)
BD< AB+AD=a+d (bất đẳng thức trong tam giác ABD)
BD< BC+DC=b+c (bất đẳng thức trong tam giác BCD)
=>2(AC+BD)<2(a+b+c+d)
=>AC+BD<a+b+c+d. (2)
Từ (1) và (2) suy ra:
\(\dfrac{a+b+c+d}{2}< AC+BD< a+b+c+d\)