K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:

a: \(\text{Δ}=\left(-2\right)^2-4\left(m-3\right)=4-4m+12=-4m+16\)

Để pt vô nghiệm thì -4m+16<0

=>m>4

Để phương trình co nghiệmduy nhất thì -4m+16=0

=>m=4

Để phương trình có hai nghiệm phân biệt thì -4m+16>0

=>m<4

b: \(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-m+1\right)\)

\(=4m^2-8m+4-4m^2+4m-4=-4m\)

Để pt vô nghiệm thì -4m<0

=>m>0

Để phương trình co nghiệmduy nhất thì -4m=0

=>m=0

Để phương trình có hai nghiệm phân biệt thì -4m>0

=>m<0

c: \(\Delta=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)

Để pt vô nghiệm thì m^2-4<0

=>-2<m<2

Để phương trình co nghiệmduy nhất thì m^2-4=0

=>m=2 hoặc m=-2

Để phương trình có hai nghiệm phân biệt thì m^2-4>0

=>m>2 hoặc m<-2

8.31:

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

XétΔBAC có BM/BA=BN/BC

nên MN//AC

=>MN vuông góc BD

=>MN vuông góc MQ

Xét tứ giác MNPQ có

MQ//NP

MQ=NP

góc NMQ=90 độ

=>MNPQ là hình chữ nhật

=>M,N,P,Q cùng nằm trên 1 đường tròn

a: Khi x=2 thì (1) sẽ là:

4-2(m+2)+m+1=0

=>m+5-2m-4=0

=>1-m=0

=>m=1

x1+x2=m+1=3

=>x2=3-2=1

b: Δ=(m+2)^2-4(m+1)

=m^2+4m+4-4m-4=m^2>=0

=>Phương trình luôn có hai nghiệm

P=(x1+x2)^2-4x1x1+3x1x2

=(x1+x2)^2-x1x2

=(m+2)^2-m-1

=m^2+4m+4-m-1

=m^2+3m+3

=(m+3/2)^2+3/4>=3/4

Dấu = xảy ra khi m=-3/2

8 tháng 2 2022

1, \(\left\{{}\begin{matrix}4x+2y=24\\7x-2y=31\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=55\\y=12-2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)

2, thiếu đề 

4, \(\left\{{}\begin{matrix}4x-y-24=10x-4y\\3y-2=4-x+y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\x+2y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x+3y=24\\-6x-12y=-36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}15y=60\\x=6-2y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=4\\x=-2\end{matrix}\right.\)

16 tháng 2 2022

\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)

a: Thay x=0 và y=5 vào (d), ta được:

m*0+5=5

=>5=5(đúng)

=>ĐPCM

b: x1<x2; |x1|>|x2|

=>x1*x2<0

PTHĐGĐ là:

x^2-mx-5=0

Vì a*c<0

nên x1,x2 luôn trái dấu

=>Với mọi m