K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

Giả sử \(\frac{a^2+a+2}{\sqrt{a^2+a+1}}\ge2\).

\(\Leftrightarrow a^2+a+2\ge2\sqrt{a^2+a+1}\)(vì \(a^2+a+1>0\)).

\(\Leftrightarrow\left(\sqrt{a^2+a+1}\right)^2-2\sqrt{a^2+a+1}+1\ge0\).

\(\Leftrightarrow\left(\sqrt{a^2+a+1}-1\right)^2\ge0\)(luôn đúng).

Dấu bằng xảy ra \(\Leftrightarrow\sqrt{a^2+a+1}-1=0\).

\(\Leftrightarrow a^2+a+1=1\).

\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=-1\end{cases}}\).

a: ΔOIK cân tại O

mà OD là đừog cao

nên D là trung điểm của IK

b: Xét ΔFDC vuông tại D và ΔFAE vuông tại A có

góc DFC=góc AFE
=>ΔFDC đồng dạng với ΔFAE

=>FD/FA=FC/FE

=>FD*FE=FC*FA

20 tháng 2 2022

Thay x = - 3 ; y = 4 vào hpt trên ta được 

\(\left\{{}\begin{matrix}-3m-4=n\\-3n+4m=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n+3m=-4\\-3n+4m=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+9m=-12\\-3n+4m=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13m=-11\\n=-3m-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=-\dfrac{11}{13}\\n=-\dfrac{19}{13}\end{matrix}\right.\)

Bài 2: 

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc 1 đường tròn(1)

Xét tứ giác OHAC có 

\(\widehat{OHA}+\widehat{OCA}=180^0\)

Do đó: OHAC là tứ giác nội tiếp

=>O,H,A,C cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,B,H,O,C cùng năm trên 1 đường tròn

b: \(\widehat{BHA}=\widehat{BOA}\)

\(\widehat{CHA}=\widehat{AOC}\)

mà \(\widehat{AOB}=\widehat{AOC}\)

nên \(\widehat{BHA}=\widehat{CHA}\)

hay HA là tia phân giác của góc BHC

21 tháng 1 2022

Làm hộ em bài 1 và 2 ảnh đầu tiên được không ạ?

Câu 3: 

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-3m+4\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-3m+4\right)\)

\(=4m^2-16m+4-4m^2+12m-16=-4m-12\)

Để phương trình có hai nghiệm phân biệt thì -4m-12>0

=>-4m>12

hay m<-3

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m+4\end{matrix}\right.\)

Theo đề, ta có: \(x_1+x_2=x_1x_2\)

\(\Leftrightarrow m^2-3m+4-2m+2=0\)

=>(m-2)(m-3)=0

hay \(m\in\varnothing\)

28 tháng 6 2021

Giúp em giải với huhu 

2 tháng 10 2021

a) \(P=\dfrac{\sqrt{x}+5}{\sqrt{x}-2}=\dfrac{\sqrt{9}+5}{\sqrt{9}-2}=\dfrac{3+5}{3-2}=8\)

b) \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{5\sqrt{x}-2}{4-x}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

c) \(M=\dfrac{Q}{P}=\dfrac{\sqrt{x}}{\sqrt{x}-2}:\dfrac{\sqrt{x}+5}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}+5}=\dfrac{\sqrt{x}}{\sqrt{x}+5}< \dfrac{1}{2}\)

\(\Leftrightarrow2\sqrt{x}< 3\sqrt{x}+15\Leftrightarrow\sqrt{x}>-15\left(đúng\forall x\ge0,x\ne4\right)\)

d) \(M=\dfrac{\sqrt{x}}{\sqrt{x}+5}=1-\dfrac{5}{\sqrt{x}+5}\in Z\)

\(\Rightarrow\sqrt{x}+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(x\ge0,x\ne4\)

\(\Rightarrow x\in\left\{0\right\}\)

 

13 tháng 4 2022

Giusp mình với mọi người ơi!!!

 

a: Khi x=2 thì (1) sẽ là:

4-2(m+2)+m+1=0

=>m+5-2m-4=0

=>1-m=0

=>m=1

x1+x2=m+1=3

=>x2=3-2=1

b: Δ=(m+2)^2-4(m+1)

=m^2+4m+4-4m-4=m^2>=0

=>Phương trình luôn có hai nghiệm

P=(x1+x2)^2-4x1x1+3x1x2

=(x1+x2)^2-x1x2

=(m+2)^2-m-1

=m^2+4m+4-m-1

=m^2+3m+3

=(m+3/2)^2+3/4>=3/4

Dấu = xảy ra khi m=-3/2