\(E=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+....+\frac{1}{2016\cdot2018}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

\(E=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{2016.2018}\)

\(E=\frac{4-2}{2.4}+\frac{6-4}{4.6}+\frac{8-6}{6.8}+...+\frac{2018-2016}{2016.2018}\)

\(2E=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2016}-\frac{1}{2018}\)

\(E=\left(\frac{1}{2}-\frac{1}{2018}\right).\frac{1}{2}\)

\(E=\frac{504}{1009}.\frac{1}{2}\)

\(E=\frac{252}{1009}\)

14 tháng 6 2017

\(E=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2016}-\frac{1}{2018}\)

\(E=\frac{1}{2}-\frac{1}{2018}\)

\(E=\frac{1005}{2018}\)

26 tháng 11 2017

số thập phân ghi làm sao

26 tháng 11 2017

tớ làm được rồi

14 tháng 4 2017

=\(\frac{6\left(1+8+27+64\right)}{12\left(1+16+54+128\right)}\)

=\(\frac{6.100}{12.199}\)

=\(\frac{50}{199}\)

Tk mình với nha mọi người!!!!!

16 tháng 6 2017

\(\frac{1x2x3+2x4x6+3x6x9+4x8x12}{1x3x4+4x6x8+6x9x12+8x12x16}\)

\(\frac{6x\left(1+8+27+64\right)}{12x\left(1+16+54+128\right)}=\frac{6x100}{12x199}=\frac{50}{199}\)

23 tháng 9 2020

 mn ơi \(2ab=200+ab\) nha không phải \(2\cdot ab\)

23 tháng 9 2020

làm :                                                                                                                                                                                                                  

\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}\)

\(=\frac{3}{8}\)

b, \(ab\cdot10-ab=2ab\)

\(ab\cdot10-ab\cdot1=2ab\)

\(ab\cdot\left(10-1\right)=2ab\)

\(ab\cdot9=2ab\)

\(ab\cdot9=200+ab\cdot1\)

\(ab\cdot9-ab\cdot1=200\)

\(ab\cdot\left(9-1\right)=200\)

\(ab\cdot8=200\)

\(ab=200:8\)

\(ab=25\)

29 tháng 8 2020

Ta có : 

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}=\frac{8}{9}\Rightarrow A< \frac{8}{9}\)(1)

Lại có \(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\Rightarrow A>\frac{2}{5}\)(2)

Từ (1) (2) => \(\frac{2}{5}< A< \frac{8}{9}\left(\text{ĐPCM}\right)\)

29 tháng 8 2020

                         Bài làm :

Ta có :

\(A=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{9.9}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>\frac{1}{2}-\frac{1}{10}\)

\(A>\frac{2}{5}\left(1\right)\)

Ta cũng có  : 

\( A=\frac{1}{2.2}+\frac{1}{3.3}+......+\frac{1}{9.9}< \frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{8.9}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-......+\frac{1}{8}-\frac{1}{9}\)

\(A< 1-\frac{1}{9}\)

\(A< \frac{8}{9}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{2}{5}< A< \frac{8}{9}\)

=> Điều phải chứng minh

Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

\(A=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)

\(A=\frac{1.2.\left(1+2^2+3^2+4^2+5^2\right)}{3.4.\left(1+2^2+3^2+4^2+5^2\right)}\)

\(A=\frac{1.2}{3.4}\)

\(A=\frac{1}{6}\)

Ta thấy : \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)

Vậy B > A

11 tháng 7 2018

Theo đề bài, ta có:

\(A=\frac{1\times2+2\times4+3\times6+4\times8+5\times10}{3\times4+6\times8+9\times12+12\times16+15\times20}\)

\(A=\frac{1\times2\times\left(1+2^2+3^2+4^2+5^2\right)}{3\times4\times\left(1+2^2+3^2+4^2+5^2\right)}\)

\(A=\frac{1\times2}{3\times4}\)

\(A=\frac{1}{6}\)

Ta thấy rằng: \(B=\frac{111111}{666665}>\frac{111111}{666666}=\frac{1}{6}\)

Vậy \(B>A\)

26 tháng 7 2020

Bài làm:

Ta có: \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{9.9}\)

\(>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)\(\Rightarrow\frac{2}{5}< S\)

Cái còn lại tự CM

28 tháng 7 2020

A= 1/2.2 + 1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9

Vì 1/2.2 > 1/2.3; 1/3.3 > 1/3.4 ; 1/5.5 > 1/5.6;...... nên 

1/2.2 +1/3.3 + 1/4.4 + 1/5.5 + 1/6.6 + 1/7.7 + 1/8.8 + 1/9.9 > 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10

Ta có: 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9 + 1/9.10

= 1/2-1/3 + 1/3 -1/4 + 1/4-1/5+...+1/9-1/10

= 1/2- 1/10

= 2/5

Vì A < 2/5 mà 2/5 <7/8 nên 2/5 < A < 7/8

Vậy....

18 tháng 7 2017

Ta có:

A = \(\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.5+15.20}\)(sửa 6,8 = 6 . 8 hay  6 x  8)

Ở phép tính này. Chúng ta thực hiện lượt các số giống nhau đi

Ta lại được:

\(\frac{1.2+2+3+4+5}{3+9.12+12+15.20}\)=  \(\frac{16}{423}\)

Rồi thực hiện so sánh. Tự làm nhá!

5 tháng 3 2017

=1659/7016 nhé

k nhé