Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{11\cdot13}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{1}{2}\left[\left(\frac{1}{3}-\frac{1}{13}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)+...+\left(\frac{1}{11}-\frac{1}{11}\right)\right]=\frac{1}{2}\left[\left(\frac{13}{39}-\frac{3}{39}\right)+0+...+0\right]\)
\(=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)
Bài làm:
Ta có: \(\frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{98.100}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{98.100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{98}-\frac{1}{100}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{99}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{98}{99}+\frac{1}{2}.\frac{49}{100}\)
\(=\frac{49}{99}+\frac{49}{200}\)
\(=\frac{14651}{19800}\)
Sửa đề : \(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
\(A=\dfrac{2}{20}+\dfrac{2}{30}+\dfrac{2}{42}+...+\dfrac{2}{240}\)
\(A=2.\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(A=2.\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(A=2.\left(\dfrac{1}{4}-\dfrac{1}{16}\right)=2.\left(\dfrac{4}{16}-\dfrac{1}{16}\right)=2.\dfrac{3}{16}=\dfrac{3}{8}\)
7/48 - (1/2 x 2 + 1/6 x 4 + 1/8 x 5 + 1/12 x 7 + 1/14 x 8) : x = 0
7/48 - (1 + 2/3 + 5/8 + 7/12 + 4/7) : x = 0 (đã rút gọn)
7/48 - (336/336 + 224/336 + 210/336 + 196/336 + 192/336) : x = 0 (quy đồng)
7/48 - 193/56 : x = 0
193/56 : x = 0 + 7/48
193/56 : x = 7/48
x = 193/56 : 7/48
x = 1158/49
Cho S = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\)
\(\Rightarrow S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
\(\Rightarrow2S=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^8}\)
\(\Rightarrow2S-S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^8}-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)\)
\(\Rightarrow S=1-\frac{1}{2^9}\) \(=\frac{511}{512}\)
Chúc bn hc tốt!
=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+....+\frac{1}{512}\)
\(=\)CÂU HỎI TƯƠNG TỰ NHA
= BN BIẾN ĐỔI TUNWHF MẪU THÀNH LŨY THỪA 2 ĐI
MÌNH KO CÓ HỜI GIAN
sorry nha tại vì máy mình có chục chặc nên ko viết ở dạng phân số đc
Nhân 2 bên với 4 được:
\(4E=\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+\frac{4}{11\cdot15}+...+\frac{4}{95\cdot99}\)
\(4E=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\)
\(4E=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(E=\frac{\frac{32}{99}}{4}=\frac{8}{99}\)
Bg
Ta có: E = \(\frac{1}{3\times7}+\frac{1}{7\times11}+\frac{1}{11\times15}+...+\frac{1}{95\times99}\)
=> E = \(\frac{1}{4}\times\left(\frac{4}{3\times7}+\frac{4}{7\times11}+\frac{4}{11\times15}+...+\frac{4}{95\times99}\right)\)
=> E = \(\frac{1}{4}\times\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{99}\right)\)
=> E = \(\frac{1}{4}\times\left(\frac{1}{3}-\frac{1}{99}\right)\)
=> E = \(\frac{1}{4}\times\left(\frac{33}{99}-\frac{1}{99}\right)\)
=> E = \(\frac{1}{4}\times\frac{32}{99}\)
=> E = \(\frac{8}{99}\)