Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn sửa số cuối tử là 4 nhé
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}=1-\dfrac{1}{405}=\dfrac{404}{405}\)
\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{401.405}\\ =1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{401}-\dfrac{1}{405}\\ =1-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-\left(\dfrac{1}{9}-\dfrac{1}{9}\right)-...-\left(\dfrac{1}{401}-\dfrac{1}{401}\right)-\dfrac{1}{405}\\ =1-0-0-....-0-\dfrac{1}{405}\\ =1-\dfrac{1}{405}\\ =\dfrac{404}{405}\)
sory em học lớp 5 không biết làm nếu biết em đã làm rồi hihihih.....
\(\frac{8}{1.5}+\frac{8}{5.9}+\frac{8}{9.13}+...+\frac{8}{x\left(x+4\right)}=\frac{1}{2}\)
\(\Leftrightarrow\)\(2\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{x\left(x+4\right)}\right)=\frac{1}{2}\)
\(\Leftrightarrow\)\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{x}-\frac{1}{x+4}=\frac{1}{4}\)
\(\Leftrightarrow\)\(1-\frac{1}{x+4}=\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{x+4-1}{x+4}=\frac{1}{2}\)
\(\Leftrightarrow\)\(\frac{x+3}{x+4}=\frac{1}{2}\)
\(\Rightarrow\)\(2\left(x+3\right)=x+4\)
\(\Leftrightarrow\)\(2x+6=x+4\)
\(\Leftrightarrow\)\(x=-2\)
Vậy....
P/s: tham khảo mk ko chắc là đúng
\(S=\frac{5-1}{1.5}+\frac{9-5}{5.9}+\frac{13-9}{9.13}+..+\frac{2005-2001}{2001.2005}\)
\(=\left(1-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{13}\right)+...+\left(\frac{1}{2001}-\frac{1}{2005}\right)\)
\(=1+\left(-\frac{1}{5}+\frac{1}{5}\right)+\left(-\frac{1}{9}+\frac{1}{9}\right)+...+\left(-\frac{1}{2001}+\frac{1}{2001}\right)-\frac{1}{2005}\)
\(=1-\frac{1}{2005}\)
\(=\frac{2004}{2005}\)
TẬP HỢP RA HAI NHÓM .MỘT NHÓM SỐ ÂM.CÒN NHÓM KIA LÀ SỐ DƯƠNG MÀ TÍNH
STUDY WELL
K NHA
MK XIN CẢM ƠN CÁC BẠN NHÌU
C = 24.7 −35.9 +27.10 −39.13 +...+2301.304 −3401.405
\(C=\left(\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{301.304}\right)-\left(\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{401.405}\right)\)
\(C=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{301}-\frac{1}{304}\right)-\frac{3}{4}\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{401}-\frac{1}{405}\right)\)
\(C=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{304}\right)-\frac{3}{4}\left(\frac{1}{5}-\frac{1}{405}\right)\)
\(C=\frac{2}{3}.\frac{75}{304}-\frac{3}{4}.\frac{16}{81}\)
\(C=\frac{25}{152}-\frac{4}{27}\)
\(C=\frac{67}{4104}\)
Study well
a)b) Bạn nhân cả tử và mẫu với 2. Mình làm luôn, ko ghi lại đề bài
a)\(\frac{2}{4.9}+\frac{2}{9.14}+\frac{2}{14.19}+...+\frac{2}{504.509}\)
=\(\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{504}-\frac{1}{509}\right)\)
=\(\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)
=\(\frac{2}{5}.\frac{505}{2036}=\frac{101}{1018}\)
b)\(\frac{2}{10.18}+\frac{2}{18.26}+\frac{2}{26.34}+...+\frac{2}{802.810}\)
=\(\frac{1}{4}\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\right)\)
=\(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{810}\right)\)
=\(\frac{1}{4}.\frac{8}{81}=\frac{2}{81}\)
c) Mình biết làm, ddoiwtj tí nữa mình làm cho. Giờ đang mỏi tay
Thẳng Nobita kun có chép bài thì đừng t..i..c..k cho nó
Ta có:\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+......+\frac{1}{81.85}\)
\(=\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+......+\frac{4}{81.85}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+.......+\frac{1}{81}-\frac{1}{85}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)
\(=\frac{1}{4}.\frac{84}{85}=\frac{21}{85}\)
\(A=\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{81.85}\)
Ta có công thức
\(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)
\(\Rightarrow A=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+..+\frac{1}{81}-\frac{1}{85}\right)\)
\(A=\frac{1}{4}.\left(1-\frac{1}{85}\right)\)
\(A=\frac{84}{340}\)
Chứng minh \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)
\(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\)
\(A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\)
\(A=\frac{1}{1}-\frac{1}{21}\)
\(A=\frac{20}{21}\)
\(\frac{20}{21}< 1\)
=> \(A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}< 1\)( đpcm )
* Mình sợ sai xD *
\(A=\frac{1}{2.9}+\frac{1}{9.7}+...+\frac{1}{252.509}\)
\(A=\frac{2}{4.9}+\frac{2}{9.14}+...+\frac{2}{504.509}\)
\(A=\frac{2}{5}.\left(\frac{5}{4.9}+\frac{5}{9.14}+...+\frac{5}{504.509}\right)\)
\(A=\frac{2}{5}.\left(\frac{9-4}{4.9}+\frac{14.9}{9.14}+...+\frac{509-504}{504.509}\right)\)
\(A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+...+\frac{1}{504}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}.\left(\frac{1}{4}-\frac{1}{509}\right)\)
\(A=\frac{2}{5}.\frac{505}{2036}\)
\(A=\frac{101}{1018}\)
\(B=\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
\(\frac{1}{2}B=\frac{1}{10.9.2}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405.2}\)
\(\frac{1}{2}B=\frac{1}{10.18}+\frac{1}{18.26}+\frac{1}{26.34}+...+\frac{1}{802.810}\)
\(4B=\frac{8}{10.18}+\frac{8}{18.26}+\frac{8}{26.34}+...+\frac{8}{802.810}\)
\(4B=\frac{18-10}{10.18}+\frac{26-18}{28.26}+\frac{34-26}{26.34}+...+\frac{810-802}{802.810}\)
\(4B=\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\)
\(4B=\frac{1}{10}-\frac{1}{810}\)
\(4B=\frac{8}{81}\)
\(B=\frac{2}{81}\)