Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(G=1+2012+2012^2+2012^3+2012^4+...+2012^{71}+2012^{72}\)
\(\Rightarrow G=\dfrac{2012^{72+1}-1}{2012-1}\)
\(\Rightarrow G=\dfrac{2012^{73}-1}{2011}< H=2012^{73}-1\)
\(A=\dfrac{1}{2}+\dfrac{5}{6}+\dfrac{11}{12}+\dfrac{29}{30}+\dfrac{41}{42}+\dfrac{55}{56}+\dfrac{71}{72}+\dfrac{89}{90}\) (sửa đề)
\(=\left(1-\dfrac{1}{2}\right)+\left(1-\dfrac{1}{6}\right)+\left(1-\dfrac{1}{12}\right)+\left(1-\dfrac{1}{30}\right)+\left(1-\dfrac{1}{42}\right)+\left(1-\dfrac{1}{56}\right)+\left(1-\dfrac{1}{72}\right)+\left(1-\dfrac{1}{90}\right)\)
\(=\left(1+1+1...+1\right)-\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=8-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\right)\) ( có 8 số hạng 1)
\(=8-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=8-\left(1-\dfrac{1}{10}\right)\)
\(=8-\dfrac{9}{10}\)
\(=\dfrac{80}{10}-\dfrac{9}{10}=\dfrac{71}{10}\)
A=1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72+89/90
=1−1/2+1−1/6+1−1/12+1−1/20+1−1/30+1−1/42+1−1/56+1−1/72+1−1/90
=9−(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72+1/90)
=9−(1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9+1/9.10)
=9-(1-1/2+1/2-1/3+.....+1/9-1/10)
=9−(1−1/10)
=9−1+1/10=8+1/10=81/10
a) 85 . 127 + 5 . 127 . 3
= (85 + 15) . 127
= 100 . 127
= 12700
a) 85 . 127 + 5 . 127 . 3
= (85 + 15) . 127
= 100 . 127
= 12700
b) 1/2 + 5/6 + 11/12 +19/20 + 29/30 + 41/42 + 55/56 + 71/72 + 89/90
1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10
1-1/10
9/10
a) \(\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+\frac{29}{30}+\frac{41}{42}+\frac{55}{56}+\frac{71}{72}+\frac{89}{90}\)
\(=1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+1-\frac{1}{30}+1-\frac{1}{42}+1-\frac{1}{56}+1-\frac{1}{72}+1-\frac{1}{90}\)
\(=8-\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(=8-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=8-\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+\frac{6-5}{5.6}+\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+\frac{10-9}{9.10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(=8-\left(\frac{1}{2}-\frac{1}{10}\right)=7,6\)
b) Bạn làm tương tự.
1/2+5/6+11/12+19/20+29/30+41/42+55/56+71/72=(1-1/2)+(1-1/6)+(1-1/12)+(1-1/20)+(1-1/30)+(1-1/42)+(1-1/56)+(1-1/72)=(1+1+1+1+1+1+1+1)-(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72)=8-(1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)=8-(1-1/2+1/2-1/3+...+1/8-1/9)=8-(1-1/9)=8-8/9=72/9-8/9=64/9
b) \(A=1+5+5^1+5^2+5^3+...+5^{71}\)
\(\Rightarrow A=\left(1+5^1+5^2\right)+5^3\left(1+5^1+5^2\right)+...+5^{69}\left(1+5^1+5^2\right)\)
\(\Rightarrow A=31+5^3.31+...+5^{69}.31\)
\(\Rightarrow A=31\left(1+5^3+...+5^{69}\right)⋮31\left(dpcm\right)\)
a) \(A=1+5^1+5^2+5^3+...+5^{71}\)
\(\Rightarrow A=\dfrac{5^{71+1}-1}{5-1}=\dfrac{5^{72}-1}{4}\)
\(4A+x=5^{72}\)
\(\Rightarrow4.\dfrac{5^{72}-1}{4}+x=5^{72}\)
\(\Rightarrow5^{72}-1+x=5^{72}\)
\(\Rightarrow x=1\)
Tính
\(E=1-2+3-4+5-6+...+71-72\)
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+...+\left(71-72\right)\) (có 36 cặp)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(=\left(-1\right).36=-36\)
Vậy \(E=-36\).
Ta có: E=1-2+3-4+5-6+...+71-72
=> E=(1-2)+(3-4)+(5-6)+...+(71-72)
=> E= (-1)+(-1)+(-1)+...+(-1)
Dãy trên có số sô hạng là: (72-1):1+1=72 (số hạng)
Có số cặp là: 72:2=36(cặp)
=> E=(-1) x 36=-36