K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

\(E=x^2-3x-15\)

\(E=x^2+3x+3x+9-9x-24\)

\(E=x\left(x+3\right)+3\left(x+3\right)-3\left(x+8\right)\)

\(E=\left(x+3\right)^2-3\left(x+8\right)\)

Có : \(\left(x+3\right)^2\ge0\Rightarrow x\ge-3\)

Vậy Min E = 0 - 3(-3+8) = 0-15=-15

Vậy Min E =-15 <=> x = -3

22 tháng 7 2019

a. x.(x+3)-x2+15=0

=> x^2 + 3x - x^2 + 15 = 0

=> 3x + 15 = 0

=> 3x = -15

=> x = -5

vậy_

b. (2x-1)(x+3) - x(2x-6) =15

=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15

=> x - 3 = 15

=> x = 18

vậy_

c. x3 -36x = 0

=> x(x^2 - 36) = 0

=> x = 0 hoặc x^2 - 36 = 0

=> x = 0 hoặc x^2 = 36

=> x = 0 hoặc x = 6 hoặc x = -6

vậy_

d. 6x2 + 6x =x2+2x+1

=> 6x(x + 1) = (x + 1)^2

=> 6x(x + 1) - (x + 1)^2 = 0

=> (x + 1)(6x - x - 1) = 0

=> (x + 1)(5x - 1) = 0

=> x = -1 hoặc 5x = 1

=> x = -1 hoặc x = 1/5

vậy_

e. x(3x+1)=1-9x2 

=> x(3x + 1) = (1 - 3x)(1 + 3x)

=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0

=> (3x + 1)(x - 1 + 3x) = 0

=> (3x + 1)(4x - 1) = 0

=> 3x + 1 = 0 hoặc 4x - 1 = 0

=> 3x = -1 hoặc 4x = 1

=> x = -1/3 hoặc x = 1/4

vậy_

4 tháng 8 2018

Hãy tích cho tui đi

khi bạn tích tui

tui không tích lại bạn đâu

THANKS

4 tháng 8 2018

a, 3x3-8x2+8x-5

= x2(3x-5)-x(3x-5)+3x-5

=(3x-5)(x2-x+1)

b, 4x3-3x2+5x-21

= x2(4x-7) +x(4x-7)+3(4x-7)

=(4x-7)(x2+x+3)

5 tháng 8 2018

mk viết kết quả thôi nhé, k biết biến đổi ib mk

a)  \(3x^3-8x^2+8x-5=\left(3x-5\right)\left(x^2-x+1\right)\)

b)  \(4x^3-3x^2+5x-21=\left(4x-7\right)\left(x^2+x+3\right)\)

c)  d)  bn ktra lại đề

e) \(3x^3-7x^2-2x+8=\left(x-2\right)\left(x+1\right)\left(3x-4\right)\)

4 tháng 8 2018

0+1006+59900++-965

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

16 tháng 10 2017

\(a,x^2+2x+7\)

\(=x^2+2x+1+6\)

\(=\left(x+1\right)^2+6\)

\(V\text{ì}\left(x+1\right)^2\ge0\)

\(\left(x+1\right)^2+6\ge0+6\)

\(\left(x+1\right)^2+6\ge6\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy MinA=6 khi x=-1

b) \(x^2+x+1\)

\(=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\)

\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)

\(x=\dfrac{1}{2}\)

16 tháng 10 2017

Bn tự lm theo phom đó rồi kết luận nhé. Mỏi tay ghê