Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xet \(\Delta BHA\)va \(\Delta BHE\)
\(\widehat{AHB}=\widehat{EHB}=90^O\)
BH la canh chung
\(\widehat{ABH}=\widehat{EBH}\)(BH la tia phan gia cua goc B)
Do do : \(\Delta BHA=\Delta BHE\)(g-c-g)
A B C H D I K I E
a) Xét \(\Delta ADI\)và \(\Delta AHI\),ta có:
-AD=AH (GT)
AI chung
DI = HI (GT- I là trung điểm HD )
=> \(\Delta ADI=\Delta AHI\left(c.c.c\right)\)
b) từ a, suy ra \(\widehat{HAI}=\widehat{DAI}\)hay \(\widehat{HAK}=\widehat{DAK}\)
Xét \(\Delta AHK\)và \(\Delta ADK\), ta có:
AH = AD (gt)
\(\widehat{HAK}=\widehat{DAK}\)( chứng minh trên)
AK chung
=> \(\Delta AHK=\Delta ADK\left(c.g.c\right)\)
=> \(\widehat{ADK}=\widehat{AHK}=90^o\)
=> \(DK\perp AC\)
mà \(AB\perp AC\)
=> DK // AB (1)
c, nối E với D
- Xét \(\Delta ADE\)và \(\Delta AHC\), ta có:
AD=AH(gt)
\(\widehat{DAE}=\widehat{HAC}\)( chung góc A)
AE = AC ( vì AH=AD, HE= DC=> AH+HE = AD+DC => AE=AC)
=>\(\Delta ADE=\Delta AHC\left(c.g.c\right)\)
=> \(\widehat{ADE}=\widehat{AHC}=90^o\) hay \(DE\perp AC\)=> DE // AB (2)
Từ (1) và (2) , suy ra D,K,E thẳng hàng (đpcm)
B A C D E H K M
Cm: a) Xét t/giác ABD và t/giác AED
có AB = BE (gt)
góc ABD = góc EBD (gt)
BD : chung
=> t/giác ABD = t/giác AED (c.g.c)
=> AD = ED (hai cạnh tương ứng)
b) Ta có: t/giác ABD = t/giác AED (Cmt)
=> góc A = góc BED (hai góc tương ứng)
Mà góc A = 900 => góc BED = 900
=> DE \(\perp\)BC
AH \(\perp\)BC
=> AH // DE (Đpcm)
c) Ta có: AH // DE (cmt)
=> góc AHD = góc HDE (so le trong)
Xét t/giác AHM và t/giác KDM
có AH = DK (gt)
góc AHM = góc MDC (cmt)
HM = DM (gt)
=> t/giác AHM = t/giác KDM (c.g.c)
=> AM = KM (hai cạnh tương ứng)
=> AM \(\equiv\)MK
=> Ba điểm A, M, K thẳng hàng
Cái chỗ áp dụng định lí Py-ta-go tự ghi thêm nhé, t làm tắt chút:
d, Giải:
Ta có: \(BC=HB+HC=13\left(cm\right)\)
\(HB^2+AH^2=AB^2\)
\(HC^2+AH^2=AC^2\)
\(\Rightarrow HB^2+HC^2+2AH^2=AB^2+AC^2\)
\(\Rightarrow9^2+4^2+2AH^2=BC^2\)
\(\Rightarrow81+16+2AH^2=13^2\)
\(\Rightarrow2AH^2=72\)
\(\Rightarrow AH^2=36\)
\(\Rightarrow AH=6\left(cm\right)\)
Vậy...
Câu 1:
Hình (chỉ mag t/c minh họa)
A B C E D
a) Xét \(\Delta ABE\) và \(\Delta DBE\) có:
\(AB=AD\left(gt\right)\)
\(\widehat{B_1}=\widehat{B_2}\) (BE là phân giác \(\widehat{B}\))
\(BE\) chung
\(\Rightarrow\Delta ABE=\Delta DBE\left(c.g.c\right)_{\left(1\right)}.\)
Từ \(_{\left(1\right)}\Rightarrow EA=ED\) (2 cạnh tương ứng).
Vậy..........
b) (chưa chắc đã đúng)
Từ \(_{\left(1\right)}\Rightarrow\widehat{A}=\widehat{BDE}\) (2 góc tương ứng)
Xét \(\Delta ABC\) có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\) (định lí tổng 3 góc của tam giác).
mà \(\widehat{B}=70^o\left(gt\right);\widehat{C}=50^o\left(gt\right).\)
\(\Rightarrow\widehat{A}=180^o-\widehat{B}-\widehat{C}.\)
\(\Rightarrow\widehat{A}=180^o-70^o-50^o.\)
\(\Rightarrow\widehat{A}=60^o.\)
mà \(\widehat{A}=\widehat{BDE}\left(cmt\right).\)
\(\Rightarrow\widehat{BDE}=60^o.\)
Vậy..........
B tham khảo lời giải trong này xemm https://cunghocvui.com/danh-muc/toan-lop-7