Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi B', C' lần lượt là giao điểm khác A của AB, AC với (O').
Do BM, CM là tiếp tuyến của (O') nên ta dễ dàng chứng minh được:
\(BM^2=BA.BB'\); \(CM^2=CA.CC'\)
\(\Rightarrow\dfrac{BM^2}{CM^2}=\dfrac{BA.BB'}{CA.CC'}\). (1)
\(\Delta AOC\sim\Delta AO'C'(g.g)\Rightarrow \frac{AC}{AC'}=\frac{AO}{AO'}\).
Tương tự, \(\frac{AB}{AB'}=\frac{AO}{AO'}\).
Do đó \(\dfrac{AB}{AB'}=\dfrac{AC}{AC'}\Rightarrow\dfrac{AB}{BB'}=\dfrac{AC}{CC'}\Rightarrow\dfrac{AB}{AC}=\dfrac{BB'}{CC'}\). (2)
Từ (1), (2) suy ra \(\dfrac{BM}{CM}=\dfrac{AB}{AC}\).
Theo tính chất đường phân giác đảo thì AM là đường phân giác ngoài của tam giác ABC
\(\Rightarrow\widehat{MAB}+\widehat{MAC}=180^o\Rightarrow180^o+\widehat{BAC}=2\widehat{EAC}\)
\(\Rightarrow180^o-\widehat{EAC}=\dfrac{180^o-\widehat{BAC}}{2}\). (3)
Các tứ giác FDEA, DBAC nội tiếp nên \(\widehat{FDB}=180^o-\widehat{EAC};\widehat{BDC}=180^o-\widehat{BAC}\). (4)
Từ (3), (4) suy ra \(\widehat{FDB}=\dfrac{\widehat{BDC}}{2}\) nên DF là phân giác góc BDC.
Gọi D là giao điểm thứ hai của AC với (O).
Khi đó \(\widehat{BAD}=90^o\) nên BD là đường kính của (O), do đó B, O, D thẳng hàng.
Kẻ AE // BD \((E\in BD)\).
Ta có \(\widehat{DAO}=\widehat{CAO'}\) mà các tam giác DAO và CAO' cân lần lượt tại O và O' nên \(\widehat{ODA}=\widehat{O'CA}\). Từ đó OD // O'C.
Theo định lý Thales: \(\dfrac{AD}{AC}=\dfrac{AO}{AO'}=\dfrac{R}{R'}\Rightarrow\dfrac{AC}{CD}=\dfrac{R'}{R+R'}\).
Mặt khác cũng theo định lý Thales: \(\dfrac{AE}{BD}=\dfrac{CA}{CD}\Rightarrow\dfrac{AE}{2R}=\dfrac{R'}{R+R'}\Rightarrow AE=\dfrac{2RR'}{R+R'}\RightarrowẠH\le AE=\dfrac{2RR'}{R+R'}\) không đổi.
Đẳng thức xảy ra khi và chỉ khi \(E\equiv H\), tức BC vuông góc với BD hay BC là tiếp xúc với (O) tại B.