K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

ko đc đăng câu hỏi bằng hình ảnh

18 tháng 12 2016

Kệ Người ta nhiều chuyện

 

2 tháng 9 2016

 Bảo Duy Cute sướng wá ha. có ngừi chúc n.n lun

2 tháng 9 2016

uk...thanks e 

NM
1 tháng 9 2021

ta có :

\(\frac{1}{cos^2x}=\frac{sin^2x+cos^2x}{cos^2x}=1+\left(\frac{sinx}{cosx}\right)^2=1+tan^2x\)

\(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=1+\left(\frac{cosx}{sinx}\right)^2=1+cot^2x\)

13 tháng 7 2017

d) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)

\(=\sqrt{5-2.2\sqrt{5}+4}-\sqrt{5+2.2\sqrt{5}+4}\)

\(=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{\left(\sqrt{5}+2\right)^2}\)

\(=\left|\sqrt{5}-2\right|-\left|\sqrt{5}+2\right|\)

\(=\sqrt{5}-2-\sqrt{5}-2=-4\)

g)\(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)

\(=\dfrac{\sqrt{3}+\sqrt{9+2.3.\sqrt{2}+2}-\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}}{\sqrt{2}+\sqrt{5+2.\sqrt{5}.1+1}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}}\)

\(=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

\(=\dfrac{\sqrt{3}+3+\sqrt{2}-\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{2}+\left(\sqrt{5}+1\right)-\left(\sqrt{5}+\sqrt{2}\right)}\)

\(=\dfrac{3}{1}=3\)

13 tháng 7 2017

\(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)\(=\sqrt{9-2\cdot2\cdot\sqrt{5}}-\sqrt{9+2\cdot2\cdot\sqrt{5}}\)\(=\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}-\sqrt{2^2+2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}\)\(=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|\)\(=\left(2-\sqrt{5}\right)-\left(2+\sqrt{5}\right)\)\(=2-\sqrt{5}-2-\sqrt{5}=-2\sqrt{5}\)

\(\dfrac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}=\dfrac{\sqrt{3}+\sqrt{11+2\cdot3\cdot\sqrt{2}}-\sqrt{5+2\cdot\sqrt{2}\cdot\sqrt{3}}}{\sqrt{2}+\sqrt{6+2\cdot\sqrt{5}}-\sqrt{7+2\cdot\sqrt{2}\cdot\sqrt{5}}}=\dfrac{\sqrt{3}+\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}+1}-\sqrt{\left(\sqrt{2}\right)^2+2\cdot\sqrt{2}\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}}=\dfrac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}=\dfrac{\sqrt{3}+\left|3+\sqrt{2}\right|-\left|\sqrt{2}+\sqrt{3}\right|}{\sqrt{2}+\left|\sqrt{5}+1\right|-\left|\sqrt{2}+\sqrt{5}\right|}=\dfrac{\sqrt{3}+3+\sqrt{2}-\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{5}+1-\sqrt{2}-\sqrt{5}}=3\)

7 tháng 10 2017

câu7:

có sinBAH=2/5

=> góc BAH=66 độ

tam giác BAH vuông tại H

=>góc B+góc BAH =90 độ

=>gócB=90-66=24 độ

áp dụng hệ thức về cạnh và góc trong tam giác vuông (tam giác ABC) ta có:

sinB*BC=AC
hay sin24*10=AC

=>AC=4,07cmundefinedn

7 tháng 10 2017

ok bn đợi mk xíu

15 tháng 9 2017

6.

a. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=2\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}=2\)

\(\Leftrightarrow\left|x-1\right|+\left|x-3\right|=2\) (*)

Xét \(x< 1\):

(*) \(\Leftrightarrow1-x+3-x=2\)

\(\Leftrightarrow-2x=-2\)

\(\Leftrightarrow x=1\left(ktm\right)\)

Xét \(1\le x< 3\) :

(*) \(\Leftrightarrow x-1+3-x=2\)

\(\Leftrightarrow2=2\left(vô.số.nghiệm\right)\)

Xét \(x\ge3\) :

(*) \(\Leftrightarrow x-1+x-3=2\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\left(tm\right)\)

Vậy pt đã cho có nghiệm thỏa \(1\le x\le3\).

b. \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\) (ĐK: \(1\ge x\ge\dfrac{1}{2}\))

\(\Leftrightarrow x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{x^2-\sqrt{\left(2x-1\right)^2}}=2\)

\(\Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)^2}=2-2x\)

\(\Leftrightarrow\left|x-1\right|=1-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1-x\\x-1=x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\0=0\left(vô.số.nghiệm\right)\end{matrix}\right.\)

Vậy pt đã cho có nghiệm thỏa \(1\ge x\ge\dfrac{1}{2}\)

6 tháng 8 2017

Bài 1 :

\(a,2\sqrt{50}-3\sqrt{72}+\sqrt{98}=2\sqrt{2.25}-3\sqrt{2.36}+\sqrt{2.49}=10\sqrt{2}-18\sqrt{2}+7\sqrt{2}\) = \(-\sqrt{2}\)

\(b,\sqrt{\left(3-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{7}\right)^2}+\sqrt{28}\) = \(\left|3-\sqrt{5}\right|-\left|\sqrt{5}-\sqrt{7}\right|+\sqrt{7.4}=3-\sqrt{5}-\sqrt{5}+\sqrt{7}+2\sqrt{7}=3-2\sqrt{5}+3\sqrt{7}\)

\(c,\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{3-2.2\sqrt{3}+4}+\sqrt{3+2.2\sqrt{3}+4}=\)\(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}=\left|-\left(2-\sqrt{3}\right)\right|+\left|\sqrt{3}+2\right|=2-\sqrt{3}+\sqrt{3}+2=4\)

6 tháng 8 2017

Siêu quá, toán lớp 9 mà làm được rùi!

2 tháng 10 2017

Hỏi đáp Toán

2 tháng 10 2017

Đường tròn

16 tháng 8 2017

Mọi người giúp mình với 2h mình đi học rùi

Bài 1: 

a: ĐKXĐ: x>0; x<>1

b: \(A=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\cdot\left(1+\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{\sqrt{x}-1}\)

c: Thay \(x=6+2\sqrt{5}\) vào A, ta được:

\(A=\dfrac{2}{\sqrt{5}+1-1}=\dfrac{2\sqrt{5}}{5}\)

d: Để |A|>A thì A>0

=>\(\sqrt{x}-1>0\)

hay x>1