Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5.
Tọa độ dỉnh của (P) là: \(I\left(-\dfrac{b}{2a};\dfrac{-\Delta}{4a}\right)\Rightarrow I\left(1;-4m-2\right)\)
Để I thuộc \(y=3x-1\)
\(\Rightarrow-4m-2=3.1-1\)
\(\Rightarrow m=-1\)
6.a.
Với \(a\ne0\)
\(\left\{{}\begin{matrix}64a+8b+c=0\\-\dfrac{b}{2a}=5\\\dfrac{4ac-b^2}{4a}=12\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c=-64a-8b=-64a-8\left(-10a\right)=16a\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)
\(\Rightarrow4a.16a-\left(-10a\right)^2=48a\)
\(\Rightarrow a=-\dfrac{4}{3}\Rightarrow b=\dfrac{40}{3}\Rightarrow c=-\dfrac{64}{3}\)
Hay pt (P): \(y=-\dfrac{4}{3}x^2+\dfrac{40}{3}x-\dfrac{64}{3}\)
b.
Thay tọa độ 3 điểm vào pt (P) ta được:
\(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\)
Pt (P): \(y=x^2-x-1\)
c.
Do (P) đi qua 3 điểm có tọa độ (1;16); (-1;0); (5;0) nên ta có:
\(\left\{{}\begin{matrix}a+b+c=16\\a-b+c=0\\25a+5b+c=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=8\\c=10\end{matrix}\right.\)
hay pt (P) có dạng: \(y=-2x^2+8x+10\)
Box toán 10 hình như phóng đại quá bạn ơi :v
Câu 2 bạn tự giải và biểu diễn nghiệm nhé, mình k biết vẽ biểu diễn :V
Bài 3 :
a) \(\left|2x+1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5\left(2x+1\ge0\right)\\-\left(2x+1\right)=5\left(2x+1< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=4\left(x\ge-\dfrac{1}{2}\right)\\-2x-1=5\left(x< -\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(x\ge-\dfrac{1}{2}\right)\left(TMĐK\right)\\x=-3\left(x< -\dfrac{1}{2}\right)\left(TMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{-3;2\right\}\)
b) \(\left|x\right|=2x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2x+1\left(x\ge0\right)\\-x=2x+1\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(x\ge0\right)\left(KTMĐK\right)\\x=-\dfrac{1}{3}\left(x< 0\right)\left(TMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{1}{3}\right\}\)
c) \(\left|2x-5\right|=x-1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=x-1\left(2x-5\ge0\right)\\-\left(2x-5\right)=x-1\left(2x-5< 0\right)\end{matrix}\right.\)
Giải giống trên : \(\Leftrightarrow\left[{}\begin{matrix}x=4\left(x\ge\dfrac{5}{2}\right)\left(TMĐK\right)\\x=2\left(x< \dfrac{5}{2}\right)\left(TMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{2;4\right\}\)
d) \(\left|x+4\right|=2x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=2x-5\left(x\ge-4\right)\\-\left(x+4\right)=2x-5\left(x< -4\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\left(TMĐK\right)\\x=\dfrac{1}{3}\left(KTMĐK\right)\end{matrix}\right.\)
Vậy \(S=\left\{9\right\}\)
Bài 4 : \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(A=\left(\dfrac{x}{\left(x+2\right)\left(x-2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(A=\left(\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(A=\dfrac{-6}{\left(x+2\right)\cdot\left(x-2\right)}:\left(\dfrac{x^2-4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
\(A=\dfrac{-6}{\left(x+2\right)\left(x-2\right)}:\dfrac{6}{x+2}\)
\(A=\dfrac{-6\cdot\left(x+2\right)}{6\left(x+2\right)\left(x-2\right)}=\dfrac{-1}{x-2}\)
b) \(\left|x\right|=\dfrac{1}{2}\Rightarrow x=\left[{}\begin{matrix}-\dfrac{1}{2}\\\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow A=\left[{}\begin{matrix}\dfrac{-1}{x-2}=-\dfrac{1}{2}\\\dfrac{-1}{x-2}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
Vậy \(S=\left\{0;4\right\}\)
c) \(A< 0\Leftrightarrow\dfrac{-1}{x-2}< 0\Rightarrow x-2>-1\Rightarrow x>1\)
Mà mẫu của biểu thức A = x - 2 => Loại số 2 vào danh sách nghiệm.
Vậy để A < 0 thì x > 2.
\(\widehat{B}\simeq37^0;\widehat{C}=53^0\)