e đg c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2022

lx

15 tháng 4 2022

lx

19 tháng 4 2018

Sinh nhật Vương Nguyên là 8/11 mà

21 tháng 4 2018

cái này mik đăng lâu rồi mà bn

6 tháng 9 2017

Từ 1 đến 79 có số lượng số là:

\(\left(79-1\right):3+1=27\)

Ta có:

\(X=1+4+7+...+79\)

\(X=\dfrac{\left(79+1\right).27}{2}=\dfrac{80.27}{2}=1080\)

Chúc bạn học tốt!!!

NV
20 tháng 12 2022

5.

Tọa độ dỉnh của (P) là: \(I\left(-\dfrac{b}{2a};\dfrac{-\Delta}{4a}\right)\Rightarrow I\left(1;-4m-2\right)\)

Để I thuộc \(y=3x-1\)

\(\Rightarrow-4m-2=3.1-1\)

\(\Rightarrow m=-1\)

6.a.

Với \(a\ne0\)

 \(\left\{{}\begin{matrix}64a+8b+c=0\\-\dfrac{b}{2a}=5\\\dfrac{4ac-b^2}{4a}=12\end{matrix}\right.\)  \(\Leftrightarrow\left\{{}\begin{matrix}64a+8b+c=0\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=-64a-8b=-64a-8\left(-10a\right)=16a\\b=-10a\\4ac-b^2=48a\end{matrix}\right.\)

\(\Rightarrow4a.16a-\left(-10a\right)^2=48a\)

\(\Rightarrow a=-\dfrac{4}{3}\Rightarrow b=\dfrac{40}{3}\Rightarrow c=-\dfrac{64}{3}\)

Hay pt (P): \(y=-\dfrac{4}{3}x^2+\dfrac{40}{3}x-\dfrac{64}{3}\)

NV
20 tháng 12 2022

b.

Thay tọa độ 3 điểm vào pt (P) ta được:

\(\left\{{}\begin{matrix}c=-1\\a+b+c=-1\\a-b+c=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=-1\end{matrix}\right.\)

Pt (P): \(y=x^2-x-1\)

c.

Do (P) đi qua 3 điểm có tọa độ (1;16); (-1;0); (5;0) nên ta có:

\(\left\{{}\begin{matrix}a+b+c=16\\a-b+c=0\\25a+5b+c=0\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=8\\c=10\end{matrix}\right.\)

hay pt (P) có dạng: \(y=-2x^2+8x+10\)

20 tháng 10 2021

???????

20 tháng 10 2021

simp!

21 tháng 4 2017

Box toán 10 hình như phóng đại quá bạn ơi :v

Câu 2 bạn tự giải và biểu diễn nghiệm nhé, mình k biết vẽ biểu diễn :V

Bài 3 :

a) \(\left|2x+1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=5\left(2x+1\ge0\right)\\-\left(2x+1\right)=5\left(2x+1< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=4\left(x\ge-\dfrac{1}{2}\right)\\-2x-1=5\left(x< -\dfrac{1}{2}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(x\ge-\dfrac{1}{2}\right)\left(TMĐK\right)\\x=-3\left(x< -\dfrac{1}{2}\right)\left(TMĐK\right)\end{matrix}\right.\)

Vậy \(S=\left\{-3;2\right\}\)

b) \(\left|x\right|=2x+1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2x+1\left(x\ge0\right)\\-x=2x+1\left(x< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(x\ge0\right)\left(KTMĐK\right)\\x=-\dfrac{1}{3}\left(x< 0\right)\left(TMĐK\right)\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{3}\right\}\)

c) \(\left|2x-5\right|=x-1\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=x-1\left(2x-5\ge0\right)\\-\left(2x-5\right)=x-1\left(2x-5< 0\right)\end{matrix}\right.\)

Giải giống trên : \(\Leftrightarrow\left[{}\begin{matrix}x=4\left(x\ge\dfrac{5}{2}\right)\left(TMĐK\right)\\x=2\left(x< \dfrac{5}{2}\right)\left(TMĐK\right)\end{matrix}\right.\)

Vậy \(S=\left\{2;4\right\}\)

d) \(\left|x+4\right|=2x-5\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=2x-5\left(x\ge-4\right)\\-\left(x+4\right)=2x-5\left(x< -4\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\left(TMĐK\right)\\x=\dfrac{1}{3}\left(KTMĐK\right)\end{matrix}\right.\)

Vậy \(S=\left\{9\right\}\)

21 tháng 4 2017

Bài 4 : \(A=\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(A=\left(\dfrac{x}{\left(x+2\right)\left(x-2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(A=\left(\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(A=\dfrac{-6}{\left(x+2\right)\cdot\left(x-2\right)}:\left(\dfrac{x^2-4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)

\(A=\dfrac{-6}{\left(x+2\right)\left(x-2\right)}:\dfrac{6}{x+2}\)

\(A=\dfrac{-6\cdot\left(x+2\right)}{6\left(x+2\right)\left(x-2\right)}=\dfrac{-1}{x-2}\)

b) \(\left|x\right|=\dfrac{1}{2}\Rightarrow x=\left[{}\begin{matrix}-\dfrac{1}{2}\\\dfrac{1}{2}\end{matrix}\right.\)\(\Rightarrow A=\left[{}\begin{matrix}\dfrac{-1}{x-2}=-\dfrac{1}{2}\\\dfrac{-1}{x-2}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)

Vậy \(S=\left\{0;4\right\}\)

c) \(A< 0\Leftrightarrow\dfrac{-1}{x-2}< 0\Rightarrow x-2>-1\Rightarrow x>1\)

Mà mẫu của biểu thức A = x - 2 => Loại số 2 vào danh sách nghiệm.

Vậy để A < 0 thì x > 2.