Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: \(\sqrt{150}-\sqrt{1.6}\cdot\sqrt{60}+4.5\cdot\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
\(=5\sqrt{6}-4\sqrt{6}-\sqrt{6}+\dfrac{9}{2}\cdot\sqrt{\dfrac{8}{3}}\)
\(=\dfrac{9}{2}\cdot\dfrac{2\sqrt{2}}{\sqrt{3}}\)
\(=3\sqrt{6}\)
\(\sqrt{150}+\sqrt{1,6}.\sqrt{60}+4.5\sqrt{2\dfrac{2}{3}}-\sqrt{6}\\ =5\sqrt{6}+4\sqrt{6}+3\sqrt{6}-\sqrt{6}\\ =11\sqrt{6}\)
Câu 1:
Gọi chiều rộng là x
Chiều dài là x+20
Theo đề, ta có: 2(x+x+20)=104
=>2x+20=52
=>2x=32
hay x=16
Vậy: Diện tích của miếng đất là 16x36=576(m2)
Xin lỗi nhưng e cần bài này dạng Giải bài bằng cách lập hệ phương trình ạ
Câu 2:
Ta có: \(\sqrt{x^2-4x+4}=x-1\)
\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)
\(\Leftrightarrow-2x=-3\)
hay \(x=\dfrac{3}{2}\left(tm\right)\)
Lời giải:
Áp dụng định lý Viet:
$x_1+x_2=4$
$x_1x_2=2$
Ta có:
$P=\frac{1}{x_1^2}-\frac{1}{x_2^2}+2024$
$=\frac{x_2^2-x_1^2}{(x_1x_2)^2}+2024$
$=\frac{(x_2-x_1)(x_2+x_1)}{(x_1x_2)^2}+2024$
$=\frac{4(x_2-x_1)}{2^2}+2024$
$=x_2-x_1+2024$
Vì $x_1>x_2$ nên $x_2-x_1<0$. Do đó:
$x_2-x_1=-|x_1-x_2|=-\sqrt{(x_1-x_2)^2}=-\sqrt{(x_1+x_2)^2-4x_1x_2}$
$=-\sqrt{4^2-4.2}=-2\sqrt{2}$
Do đó: $P=-2\sqrt{2}+2024$