
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


theo đề ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2\cdot\left(xy+yz+zx\right)=0\)
\(\Rightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\left(1\right)\)
ta co: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
mà x + y + z = 0
\(\Rightarrow x^3+y^3+z^3-3xyz=0\Rightarrow x^3+y^3+z^3=3xyz\left(2\right)\)
a. VT = \(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2\cdot\left(x^2y^2+y^2z^2+x^2z^2\right)\)
ta có: \(\left(xy+yz+zx\right)^2=\left(x^2y^2+y^2z^2+x^2z^2\right)+2xyz\cdot\left(x+y+z\right)\)
vì x+y+z=0 nên: \(\left(xy+yz+zx\right)^2=\left(x^2y^2+y^2z^2+x^2z^2\right)\)
từ (1) ta có: \(\left(x^2+y^2+z^2\right)^2=\left\lbrack-2\left(xy+yz+zx\right)^{}\right\rbrack^2\) (*)
\(=4\cdot\left(xy+yz+zx\right)^2=4\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)
ta có: \(4\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)=x^4+y^4+z^4+2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)
mà: \(2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)=x^4+y^4+z^4\)
thay vào (*) ta được:
\(\left(x^2+y^2+z^2\right)^2=\left(x^4+y^4+z^4\right)+2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(=x^4+y^4+z^4+x^4+y^4+z^4=2\cdot\left(x^4+y^4+z^4\right)=VP\)
⇒ đpcm
b. \(VT=5\cdot\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)\)
\(=5\cdot\left(3xyz\right)\left(x^2+y^2+z^2\right)\)
\(=15xyz\cdot\left(x^2+y^2+z^2\right)\) (3)
\(x+y+z=0\Rightarrow x+y=-z\)
\(x^5+y^5+z^5=x^5+y^5+\left\lbrack-\left(x+y\right)\right\rbrack^5=x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5y^4+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left\lbrack x^3+y^3+2xy\left(x+y\right)\right\rbrack\)
\(=-5xy\left\lbrack\left(x+y\right)^3-3xy\left(x+Y\right)+2xy\left(x+y\right)\right\rbrack\)
\(=-5xy\left\lbrack\left(x+Y\right)^3-xy\left(x+y\right)\right\rbrack\)
\(=-5xy\left(x+Y\right)\left\lbrack\left(x+y\right)^2-xy\right\rbrack\)
vì x+y=-z nên ta có:
\(x^5+y^5+z^5=-5xy\left(-z\right)\left\lbrack\left(-z\right)^2-xy\right\rbrack=5xyz\left(x^2-zy\right)\)
mặt khác \(x+y=-z\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)
\(x^2+y^2+z^2=x^2+y^2+\left(x+y\right)^2\)
\(=x^2+y^2+x^2+2xy+y^2=2\cdot\left(x^2+xy+y^2\right)\)
\(z^2-xy=\left(x+y\right)^2-xy=x^2+2xy+y^2-xy=x^2+xy+y^2\)
vậy \(x^5+y^5+z^5=5xyz\cdot\left(x^2+xy+y^2\right)=\frac52xyz\left(x^2+y^2+z^2\right)\)
\(\Rightarrow2\cdot\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
⇒ \(6\cdot\left(x^5+y^5+z^5\right)=15xyz\left(x^2+y^2+z^2\right)\) (4)
từ (3) và (4) ⇒ VT = VP

bài 1:
\(a.x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)
\(b.x^3-\frac{1}{27}=\left(x-\frac13\right)\left(x^2+\frac13x+\frac19\right)\)
\(c.x^3-27y^3=\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(d.27x^3+8y^3=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)
bài 2:
\(a.A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)
\(=x^3+8-x^3+2=10\)
\(b.B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x^3-1\right)-\left(x^3+1\right)=-2\)
\(c.C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)
\(=\left(8x^3-y^3\right)+\left(y^3-27x^3\right)=-19x^3\)
bài 3:
\(a.A=\left(x-5\right)\left(x^2+5x+25\right)=x^3-125\)
thay x = 6 vào A ta được:
\(6^3-125=216-125=91\)
\(b.B=\left(3x-2\right)\left(9x^2+6x+4\right)=27x^3-8\)
thay x = 10/3 vào B ta được:
\(27\cdot\left(\frac{10}{3}\right)^3-8=992\)
\(c.C=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)
thay x = 5; y = 5/3 vào C ta được
\(8\cdot5^3-27\cdot\left(\frac53\right)^3=875\)
bài 4:
\(a.\left(2x-5\right)\left(4x^2+10x+25\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=\left(2x-5\right)\left\lbrack\left(2x\right)^2+\left(2x\right)\cdot5+5^2\right\rbrack-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=\left(2x\right)^3-5^3-\left(x^3+3^3\right)\)
\(=8x^3-125-\left(x^3+27\right)=7x^3-152\)
\(b.\left(2y-1\right)\left(4y^2+2y+1\right)+\left(3-y\right)\left(9+3y+y^2\right)+y\left(2-7y^2\right)\)
\(=\left(2y-1\right)\left\lbrack\left(2y\right)^2+\left(2y\right)\cdot1+1^2\right\rbrack+\left(3-y\right)\left(3^2+3y+y^2\right)+2y-7y^3\)
\(=\left(2y\right)^3-1^3+\left(3^3-y^3\right)+2y-7y^3\)
\(=8y^3-1+27-y^3+2y-7y^3=2y+26\)
bài 5:
\(a.A=\left(x+1\right)\left(x^2-x+1\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=\left(x^3+1\right)-\left(x^3+27\right)=-26\)
\(b.B=\left(y+2\right)\left(y^2-2y+4\right)+\left(5-y\right)\left(25+5y+y^2\right)\)
\(=\left(y^3+8\right)+\left(125-y^3\right)=133\)
\(c.C=4\cdot\left(x^3-8\right)-4\cdot\left(x+2\right)\left(x^2-2x+4\right)\)
\(=4\cdot\left(x^3-2^3\right)-4\cdot\left(x^3+2^3\right)\)
\(=4x^3-32-4x^3-32=-64\)
\(d.D=\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-2y\right)\left(x^2+2xy+4y^2\right)-8\cdot\left(2y^3+1\right)\)
\(=\left(x^3+8y^3\right)-\left(x^3-8y^3\right)-8\cdot\left(2y^3+1\right)=16y^3-16y^3-8=-8\)

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

Bài 2:
a: ĐKXĐ: x∉{2;-2}
b: \(A=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2x-4}{x^2-4}\)
\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x}{x-2}-\frac{2}{x+2}+\frac{2}{x+2}=\frac{3x}{x-2}\)
c: Thay x=-5 vào A, ta được:
\(A=\frac{3\cdot\left(-5\right)}{-5-2}=\frac{-15}{-7}=\frac{15}{7}\)
d: Để A nguyên thì 3x⋮x-2
=>3x-6+6⋮x-2
=>6⋮x-2
=>x-2∈{1;-1;2;-2;3;-3;6-6}
=>x∈{1;2;4;0;5;-1;8;-4}
Kết hợp ĐKXĐ, ta được: x∈{1;4;0;5;-1;8;-4}
Bài 1:
a: \(A=x^2+10x+25\)
\(=x^2+2\cdot x\cdot5+5^2=\left(x+5\right)^2\)
b: \(B=x^2-y^2+8x-8y\)
=(x-y)(x+y)+8(x-y)
=(x-y)(x+y+8)
c: \(C=x^2+4x-5\)
\(=x^2+5x-x-5\)
=x(x+5)-(x+5)
=(x+5)(x-1)

\(x+y+z=0\rArr\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)
\(\rArr x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\rArr x^2+y^2+z^2=0\) (do \(xy+yz+xz=0\) )
\(\rArr x=y=z=0\)
Do đó:
\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}=-1+0+1=0\)

a: Xét ΔABC có F,E lần lượt là trung điểm của AB,AC
=>FE là đường trung bình của ΔABC
=>FE//BC và \(FE=\frac12BC\)
=>BFEC là hình thang
Hình thang BFEC có \(\hat{FBC}=\hat{ECB}\) (ΔABC cân tại A)
nên BFEC là hình thang cân
b: Xét ΔABC có
F,D lần lượt là trung điểm của BA,BC
=>FD là đường trung bình của ΔABC
=>FD//AC và \(FD=\frac{AC}{2}\)
Xét ΔMAC có
I,K lần lượt là trung điểm của MA,MC
=>IK là đường trung bình củaΔMAC
=>IK//AC và \(IK=\frac{AC}{2}\)
Ta có: FD//AC
IK//AC
Do đó: FD//IK
Ta có: \(FD=\frac{AC}{2}\)
\(IK=\frac{AC}{2}\)
Do đó: FD=IK
Xét tứ giác FDKI có
FD//IK
FD=IK
Do đó: FDKI là hình bình hành
c: HK=HM+KM
\(=\frac12\cdot\left(MB+MC\right)=\frac12\cdot BC\)
=FE
Xét tứ giác FEKH có
FE//KH
FE=KH
Do đó: FEKH là hình bình hành
=>FK cắt EH tại trung điểm của mỗi đường(1)
FDKI là hình bình hành
=>FK cắt DI tại trung điểm của mỗi đường(2)
Từ (1),(2) suy ra FK,EH,DI đồng quy
d: ΔABC đều
mà AD là đường trung tuyến
nên AD là phân giác của góc BAC và AD⊥BC
=>\(\hat{BAD}=\frac12\cdot\hat{BAC}=\frac12\cdot60^0=30^0\)
Xét tứ giác APMD có \(\hat{APM}+\hat{ADM}=90^0+90^0=180^0\)
nên APMD là tứ giác nội tiếp đường tròn đường kính AM
=>APMD nội tiếp (I)
Xét (I) có \(\hat{PAD}\) là góc nội tiếp chắn cung PD
=>\(\hat{PID}=2\cdot\hat{PAD}=60^0\)
Xét ΔIPD có IP=ID và \(\hat{PID}=60^0\)
nên ΔIPD đều

Bài 2:
a: \(\left(-\frac13x^2y\right)\cdot2xy^3=\left(-\frac13\cdot2\right)\cdot x^2\cdot x\cdot y\cdot y^3=-\frac23x^3y^4\)
b: \(\left(-\frac34x^2y\right)\cdot\left(-xy\right)^3=\left(-\frac34\right)\cdot\left(-1\right)\cdot x^2\cdot x^3\cdot y\cdot y^3=\frac34x^5y^4\)
c: \(\frac35\cdot x^2y^5\cdot x^3y^2\cdot\frac{-2}{3}=\left(\frac35\cdot\frac{-2}{3}\right)\cdot x^2\cdot x^3\cdot y^5\cdot y^2=-\frac25x^5y^7\)
d: \(\left(\frac34x^2y^3\right)\cdot\left(2\frac25x^4\right)=\frac34x^2y^3\cdot\frac{12}{5}x^4=\frac34\cdot\frac{12}{5}\cdot x^2\cdot x^4\cdot y^3=\frac95x^6y^3\)
e: \(\left(\frac{12}{15}x^4y^5\right)\cdot\left(\frac59x^2y\right)=\frac45\cdot\frac59\cdot x^4\cdot x^2\cdot y^5\cdot y=\frac49x^6y^6\)
f: \(\left(-\frac17x^2y\right)\left(-\frac{14}{5}x^4y^5\right)=\frac17\cdot\frac{14}{5}\cdot x^2\cdot x^4\cdot y\cdot y^5=\frac25x^6y^6\)
Bài 1: Các đơn thức là \(x^2y;-13;\left(-2\right)^3xy^7\)

bài 13:
a: Xét tứ giác AMHN có \(\hat{AMH}=\hat{ANH}=\hat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Xét ΔAMH vuông tại M và ΔAMD vuông tại M có
AM chung
MH=MD
Do đó: ΔAMH=ΔAMD
=>\(\hat{MAH}=\hat{MAD}\)
=>AM là phân giác của góc HAD
=>\(\hat{HAD}=2\cdot\hat{HAM}\)
Xét ΔANH vuông tại N và ΔANE vuông tại N có
AN chung
NH=NE
Do đó: ΔANH=ΔANE
=>\(\hat{NAH}=\hat{NAE}\)
=>AN là phân giác của góc HAE
=>\(\hat{HAE}=2\cdot\hat{HAN}\)
Ta có: \(\hat{DAE}=\hat{DAH}+\hat{EAH}\)
\(=2\left(\hat{HAN}+\hat{HAM}\right)=2\cdot\hat{NAM}=180^0\)
=>D,A,E thẳng hàng
c: ΔAHM=ΔADM
=>AH=AD
ΔANH=ΔANE
=>AH=AE
Xét ΔAHB và ΔADB có
AH=AD
\(\hat{HAB}=\hat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
=>\(\hat{AHB}=\hat{ADB}\)
=>\(\hat{ADB}=90^0\)
=>BD⊥AD
=>BD⊥ DE(2)
Xét ΔAHC và ΔAEC có
AH=AE
\(\hat{HAC}=\hat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
=>\(\hat{AHC}=\hat{AEC}\)
=>\(\hat{AEC}=90^0\)
=>CE⊥ DE(1)
Từ (1),(2) suy ra BD//CE
=>BDEC là hình thang
d: Xét ΔHED có
N,M lần lượt là trung điểm của HE,HD
=>NM là đường trung bình của ΔHED
=>ED=2MN=MN+AH
Bài 12:
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
Hình bình hành ABDC có \(\hat{BAC}=90^0\)
nên ABDC là hình chữ nhật
b: ABDC là hình chữ nhật
=>AB//DC và AB=DC
AB//DC
=>DC//BE
ta có: AB=DC
AB=BE
Do đó: DC=BE
Xét tứ giác BCDE có
BE//DC
BE=DC
Do đó: BCDE là hình bình hành
c: DK=2BK
DK+BK=DB
Do đó: DB=2BK+BK=3BK
=>\(\frac{DK}{DB}=\frac23\)
Xét ΔADE có
DB là đường trung tuyến
\(DK=\frac23DB\)
Do đó: K là trọng tâm của ΔADE
Xét ΔADE có
K là trọng tâm
M là trung điểm của AD
Do đó: E,K,M thẳng hàng
=>EK,AD,BC đồng quy
theo đề ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2+2\cdot\left(xy+yz+zx\right)=0\)
\(\Rightarrow x^2+y^2+z^2=-2\left(xy+yz+xz\right)\left(1\right)\)
ta co: \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
mà x + y + z = 0
\(\Rightarrow x^3+y^3+z^3-3xyz=0\Rightarrow x^3+y^3+z^3=3xyz\left(2\right)\)
a. VT = \(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2\cdot\left(x^2y^2+y^2z^2+x^2z^2\right)\)
ta có: \(\left(xy+yz+zx\right)^2=\left(x^2y^2+y^2z^2+x^2z^2\right)+2xyz\cdot\left(x+y+z\right)\)
vì x+y+z=0 nên: \(\left(xy+yz+zx\right)^2=\left(x^2y^2+y^2z^2+x^2z^2\right)\)
từ (1) ta có: \(\left(x^2+y^2+z^2\right)^2=\left\lbrack-2\left(xy+yz+zx\right)^{}\right\rbrack^2\) (*)
\(=4\cdot\left(xy+yz+zx\right)^2=4\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)
ta có: \(4\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)=x^4+y^4+z^4+2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)
mà: \(2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)=x^4+y^4+z^4\)
thay vào (*) ta được:
\(\left(x^2+y^2+z^2\right)^2=\left(x^4+y^4+z^4\right)+2\cdot\left(x^2y^2+y^2z^2+z^2x^2\right)\)
\(=x^4+y^4+z^4+x^4+y^4+z^4=2\cdot\left(x^4+y^4+z^4\right)=VP\)
⇒ đpcm
b. \(VT=5\cdot\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)\)
\(=5\cdot\left(3xyz\right)\left(x^2+y^2+z^2\right)\)
\(=15xyz\cdot\left(x^2+y^2+z^2\right)\) (3)
\(x+y+z=0\Rightarrow x+y=-z\)
\(x^5+y^5+z^5=x^5+y^5+\left\lbrack-\left(x+y\right)\right\rbrack^5=x^5+y^5-\left(x+y\right)^5\)
\(=x^5+y^5-\left(x^5+5y^4+10x^3y^2+10x^2y^3+5xy^4+y^5\right)\)
\(=-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)\)
\(=-5xy\left\lbrack x^3+y^3+2xy\left(x+y\right)\right\rbrack\)
\(=-5xy\left\lbrack\left(x+y\right)^3-3xy\left(x+Y\right)+2xy\left(x+y\right)\right\rbrack\)
\(=-5xy\left\lbrack\left(x+Y\right)^3-xy\left(x+y\right)\right\rbrack\)
\(=-5xy\left(x+Y\right)\left\lbrack\left(x+y\right)^2-xy\right\rbrack\)
vì x+y=-z nên ta có:
\(x^5+y^5+z^5=-5xy\left(-z\right)\left\lbrack\left(-z\right)^2-xy\right\rbrack=5xyz\left(x^2-zy\right)\)
mặt khác \(x+y=-z\Rightarrow\left(x+y\right)^2=z^2\Rightarrow x^2+y^2+2xy=z^2\)
\(x^2+y^2+z^2=x^2+y^2+\left(x+y\right)^2\)
\(=x^2+y^2+x^2+2xy+y^2=2\cdot\left(x^2+xy+y^2\right)\)
\(z^2-xy=\left(x+y\right)^2-xy=x^2+2xy+y^2-xy=x^2+xy+y^2\)
vậy \(x^5+y^5+z^5=5xyz\cdot\left(x^2+xy+y^2\right)=\frac52xyz\left(x^2+y^2+z^2\right)\)
\(\Rightarrow2\cdot\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
⇒ \(6\cdot\left(x^5+y^5+z^5\right)=15xyz\left(x^2+y^2+z^2\right)\) (4)
từ (3) và (4) ⇒ VT = VP
câu c: phần này đã được chứng minh nằm trong câu b nha bạn