K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2023

ĐKXĐ: m ≠ -2

Thay x = -3 vào (d') ta có:

y = -3.(-3) + 1 = 10

Thay x = -3; y = 10 vào (d) ta có:

(m + 3).(-3) + 5 = 10

⇔ -3m - 9 + 5 = 10

⇔ -3m = 10 + 9 - 5

⇔ -3m = 14

⇔ m = -14/3 (nhận)

Vậy m = -14/3 thì (d) cắt (d') tại điểm có hoành độ là -3

22 tháng 11 2019

mình vừa kiểm tra phần này lun nè

22 tháng 11 2019

Giúp mình với 

16 tháng 12 2023

Để (d) cắt (d') thì \(m^2-2\ne2\)

=>\(m^2\ne4\)

=>\(m\notin\left\{2;-2\right\}\)

Phương trình hoành độ giao điểm là:

\(\left(m^2-2\right)x+m-1=2x-3\)

=>\(\left(m^2-2-2\right)x=-3-m+1\)

=>\(\left(m^2-4\right)x=-m-2\)

Để (d) cắt (d') tại điểm có hoành độ là số nguyên thì

\(\left\{{}\begin{matrix}m\notin\left\{2;-2\right\}\\\left(m^2-4\right)x=-m-2\\x\in Z\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\notin\left\{2;-2\right\}\\x=\dfrac{-\left(m+2\right)}{\left(m+2\right)\left(m-2\right)}=-\dfrac{1}{m-2}\\x\in Z\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\in R\backslash\left\{2;-2\right\}\\m-2\inƯ\left(-1\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\notin\left\{2;-2\right\}\\m-2\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow m\in\left\{3;1\right\}\)

a: f(2)=2^2=4

thay x=2 và y=4 vào (d), ta được:

4(m-1)+m=4

=>5m-4=4

=>m=8/5

b: PTHĐGĐ là;

x^2-2(m-1)x-m=0

Để (P) cắt (d) tại hai điểm nằm về hai phía so với trục tung thì -m<0

=>m>0

x1^2+2(m-1)x2=6

=>x1^2+x2(x1+x2)=6

=>x1^2+x2^2+x1x2=6

=>(x1+x2)^2-x1x2=6

=>(2m-2)^2-(-m)-6=0

=>4m^2-8m+4+m-6=0

=>m=2(nhận) hoặc m=-1/4(loại)

Thay x=-1 vào (P), ta được:

y=-2*(-1)^2=-2

Thay x=-1và y=-2 vào (d), ta được:

-(m+1)-m-3=-2

=>-m-1-m-3=-2

=>-2m-4=-2

=>2m+4=2

=>m=-1

30 tháng 5 2021

a) Xét pt hoành độ gđ của (d) và (P):

\(x^2-mx+m-1=0\) (*)

Thay m=4 vào pt (*) => x=3 và x=1 thay vào (P) suy ra được tung độ tương ứng y=9 và y=1

Đ/a: \(\left(3;9\right),\left(1;1\right)\)

b) Để (d) và (P) cắt nhau tại hai điểm pb <=> \(\Delta>0\) <=> \(m^2-4\left(m-1\right)>0\) <=> \(\left(m-2\right)^2>0\) <=> \(m\ne2\)

Theo giả thiết => \(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=\dfrac{1}{\left(\dfrac{1}{\sqrt{5}}\right)^2}\)  (Áp dụng hệ thức lượng trong tam giác vuông)

\(\Leftrightarrow\dfrac{x^2_1+x_2^2}{x_1^2.x_2^2}=5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5\left(x_1x_2\right)^2=0\)

\(\Leftrightarrow m^2-2\left(m-1\right)-5\left(m-1\right)^2=0\)

\(\Leftrightarrow-4m^2+8m-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

9 tháng 2 2021

a, - Ta có : Đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 6 .

\(\Rightarrow-\dfrac{b}{a}=-\dfrac{3}{a}=6\)

\(\Rightarrow a=-\dfrac{1}{2}\)

b, - Xét phương trình hoành độ giao điểm :\(3x+2=\left(2m-1\right)x+8\)

\(\Leftrightarrow3x+2=2mx-x+8\)

\(\Leftrightarrow3x+2-2mx+m-8=0\)

\(\Leftrightarrow x\left(3-2m\right)=6-m\)

- Để hai đường thẳng cắt được nhau thì : \(3-2m\ne0\)

\(\Leftrightarrow m\ne\dfrac{3}{2}\)

Vậy ...

 

a) Vì đồ thị hàm số y=ax+3 cắt trục hoành tại điểm có hoành độ bằng 6 nên

Thay x=6 và y=0 vào hàm số y=ax+3, ta được:

\(6a+3=0\)

\(\Leftrightarrow6a=-3\)

hay \(a=-\dfrac{1}{2}\)

Vậy: \(a=-\dfrac{1}{2}\)

b)

Để hàm số y=(2m-1)x+8 là hàm số bậc nhất thì \(2m-1\ne0\)

\(\Leftrightarrow2m\ne1\)

hay \(m\ne\dfrac{1}{2}\)(1)

Để (d) cắt (d') thì \(2m-1\ne3\)

\(\Leftrightarrow2m\ne4\)

hay \(m\ne2\)(2)

Từ (1) và (2) suy ra \(m\notin\left\{\dfrac{1}{2};2\right\}\)

9 tháng 5 2015
b:(d) cắt trục hoành tại điểm có hoành độ bằng 3 nên ta thay x= 3 ta được y = ( m-2 )×3 + m +3 <=> 3m -6 + m +3 <=> 4m^2 -3
9 tháng 5 2015
a: hàm số nghich biến khi a<0 <=> m-2 <0 <=> m < 2