Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu như theo kiến thức lớp 9 chưa học về đồ thị nào khác ngoài đồ thị bậc nhất (là 1 đường thẳng) thì 2 dạng bài này gần như tương đương nhau. Nhưng khi bạn lên cấp III và học những loại đồ thị đường cong bậc hai (ellipse, parabol, hyperbol, đường tròn,...) thì 2 dạng bài này rõ ràng khác xa nhau nhé. (Vì xác định hàm số thì đó có thể là hàm số kiểu gì cũng được, nhưng viết ptđt thì chỉ có liên quan đến đường thẳng thôi.)
a: Xét tứ giác AECO có
\(\widehat{EAO}+\widehat{ECO}=90^0+90^0=180^0\)
=>AECO là tứ giác nội tiếp
=>A,E,C,O cùng thuộc một đường tròn
b: Ta có: ΔOBC cân tại O
mà OF là đường trung tuyến
nên OF là tia phân giác của góc COB
Xét ΔCOF và ΔBOF có
OC=OB
\(\widehat{COF}=\widehat{BOF}\)
OF chung
Do đó: ΔOCF=ΔOBF
=>\(\widehat{OCF}=\widehat{OBF}\)
mà \(\widehat{OCF}=90^0\)
nên \(\widehat{OBF}=90^0\)
=>FB là tiếp tuyến của (O)
c: Xét (O) có
EA,EC là các tiếp tuyến
=>EA=EC
=>E nằm trên đường trung trực của AC(1)
Ta có: OA=OC
=>O nằm trên đường trung trực của AC(2)
Từ (1) và (2) suy ra OE là đường trung trực của AC
=>OE\(\perp\)AC tại H và H là trung điểm của AC
Xét ΔAEO vuông tại A có AH là đường cao
nên \(OH\cdot OE=OA^2\)
=>\(4\cdot OH\cdot OE=4\cdot OA^2=\left(2\cdot OA\right)^2=AB^2\)
a: Xét (O) có
DK,DM là các tiếp tuyến
Do đó: OD là phân giác của gócMOK và DM=DK
Xét (O) có
EK,EN là các tiếp tuyến
Do đó: EK=EN và OE là phân giác của góc KON
Ta có: DE=DK+KE
mà DK=DM
và EK=EN
nên DE=DM+EN
b: Ta có: DM=DK
=>D nằm trên đường trung trực của MK(1)
Ta có: OM=OK
=>O nằm trên đường trung trực của MK(2)
Từ (1) và (2) suy ra DO là đường trung trực của MK
=>DO\(\perp\)MK
Xét (O) có
ΔMKN nội tiếp
MN là đường kính
Do đó: ΔMKN vuông tại K
=>MK\(\perp\)KN
Ta có: MK\(\perp\)KN
MK\(\perp\)OD
Do đó: OD//NK
Gọi E là giao của AC và PB, F là giao của AB và PC
Qua P kẻ đường thẳng d song song với BC
Giả sử E và F lần luợt là giao của AC và AB với d
Ta có: \(\frac{BM}{PF'}=\frac{CM}{PE'}\left(=\frac{AM}{PA}\right)\), mà \(BM=CM\) => PE'=PF'
Do đó \(\frac{PE}{EB}=\frac{PE'}{BC}=\frac{PF'}{BC}=\frac{PF}{FC}\) => EF//BC => \(\frac{EA}{AC}=\frac{FA}{AB}\)
Gọi I là giao của HQ và AB; K là giao của HR và AC
Áp dụng định lý Talet có: \(\frac{QI}{IH}=\frac{EA}{AC}=\frac{FA}{AB}=\frac{RK}{KH}\), do đó: IK//QR (1)
\(\widehat{MAC}=\widehat{AIK}\) nên PM _|_ IK
Từ (1) => PM _|_ QR hay PA _|_ QR
Gọi S là giao RA và PB
\(\frac{HI}{HK}=\frac{HQ}{HR}=\frac{HB}{HA}\Rightarrow\frac{HB}{HQ}=\frac{HA}{HR};\widehat{BHQ}=\widehat{AHR}\)
có tam giác BHQ đồng dạng với tam giác AHE
=> \(\widehat{QBH}=\widehat{RAH}\) => Tứ giác BHAS nội tiếp
Vậy \(\widehat{ASB\:}=90^o\) hay RS _|_ PQ (2)
Từ (1) (2) => A là trực tâm tam giác PQR
*Trong một tam giác:
- Đường trung bình là đường nối 2 trung điểm của 2 cạnh.
- Đường trung tuyến là đường nối từ 1 đỉnh đến trung điểm cạnh đối diện đỉnh đó.
- Đường trung trực là đường vuông góc tại trung điểm của 1 cạnh.