Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha !
a) Theo đề, ta có:
N là điểm đối xứng với M qua I
mà I là trung điểm của AC hay I thuộc AC
=> N đối xứng với M qua AC.
b) Xét tam giác ABC có:
BM = CM (gt)
AI = CI (gt)
=> MI là đường trung bình của tam giác ABC
=> MI//AB
mà AB vuông góc với AC
=> MI vuông góc AC
Xét tứ giác ANCM có:
MI = NI (gt)
AI = CI (gt)
=> tứ giác ANCM là hình bình hành có MI vuông góc với AC
=> ANCM là hình thoi
c) Hình thoi ANCM là hình vuông khi đường chéo AM là phân giác của góc A
Tam giác ABC có AM vừa là phân giác vừa là trung tuyến nên tam giác ABC cân tại A .
Vậy điều kiện để ANCM là hình vuông là tam giác ABC vuông cân tại A.
Vì M, N là trung điểm AB, AC=> MN là đường trung bình ABC => MN song song BC
PQ chứng minh tương tự trong tam giác IBC=> PQ song song BC
Suy ra: MNsong song PQ(1)
Vì N là trung điểm AC, P là trung điểm IC=> NP là đường trung bình tam giác ACI=> PN song song AI hay PN song song AH
Tương tự => MQ song song AH
suy ra MQ song song NP(2)
Từ (1) và (2) => MNPQ là hình bình hành
VÌ MN song song BC và NP song song AH mà AH vuông góc BC=> MN vuông góc NP
Vậy MNPQ là hcn.
c
C. Cả điểm A và điểm B