K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2018

+ Ta có y '   =   f ' ( x ) = a d   -   b c ( c x   +   d ) 2  . Từ đồ thị hàm số y= f’(x)  ta thấy:

Đồ thị hàm số y= f’(x)  có tiệm cận đứng x=1 nên –d/c= 1 hay  c= -d

Đồ thị hàm số y= f’(x )  đi qua điểm (2;2)

⇒ a d   -   b c ( 2 c   +   d ) 2   =   2   ↔ a d   -   b c   =   2   ( 2 c + d ) 2

Đồ thị hàm số y= f’(x)  đi qua điểm (0;2)

⇒ a d   -   b c d 2   =   2   ↔ a d   -   b c   =   2 d 2

Đồ thị hàm số y=f(x)  đi qua điểm (0;3) nên b/d= 3 hay b= 3d

Giải hệ  gồm 4 pt này ta được a=c= -d và b= 3d  .

 Ta chọn a=c= 1 ; b= -3 ; d= -1  

⇒ y   =   x   -   3 x   - 1  

Chọn  D.

19 tháng 1 2018

Đáp án D.

17 tháng 3 2018

+Ta có đạo hàm f’ (x)= 3ax2+ 2bx+c .

+ Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số  đi qua các điểm (0 ; 0) ; (1 ; -1) ; (2 ; 0)  nên  a= 1/3 ; b= -1 ; c= 0.

Do vậy hàm số cần tìm có dạng y= 1/3 x3-x2+ d  .

 Điểm tiếp xúc với trục hoành là cực trị của đồ thị hàm số và tại đó ta có x= 0 hoặc x= 2. + Vì đồ thị hàm số y= f(x)  tiếp xúc với trục hoành tại điểm có hoành độ dương nên đồ thị hàm số tiếp xúc trục hoành tại điểm  x= 2 nghĩa là:

 f( 2) = 0 hay  8/3-4+ d= 0  nên d= 4/3

Chọn D.

15 tháng 7 2017

Đáp án D

15 tháng 4 2018

+ Từ đồ thị của hàm số   a> 0 ta dễ dàng có được đồ thị hàm số y= f’(x)  như sau:

Ta có : f’(x) = 4ax3+ 2bx

 Đồ thị hàm số y= f’(x)  đi qua  ta tìm được a=1 và b= -2

Suy ra hàm số đã cho có dạng: f(x) =x4-2x2+d và f’(x) = 4x3-4x.

+ Do (C) tiếp xúc với trục hoành nên f’(x) = 0 khi x=0; x=1; x=- 1.

Do (C) đối xứng qua trục tung nên (C) tiếp xúc với trục hoành tại 2 điểm (1; 0) và (-1; 0).

Do đó: f(0) =1  suy ra 1= 0-2.0+ d nên d= 1

Vậy hàm số cần tìm là: y =x4-2x2+1 

+ Xét phương trình hoành độ giao điểm của (C) với trục hoành:

x4-2x2+1  =0 nên x=± 1

Chọn D.

 

30 tháng 4 2018

Đáp án C

4 tháng 3 2017

Chọn C

TXĐ:

Gọi là giao điểm của với trục .

.

PTTT:

Vậy 

29 tháng 12 2018

Ta có đạo hàm : f’ (x) = 3ax2+ 2bx+ c.

 Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số y= f’ (x) đi qua 3 điểm

( -1; 0) ; (3; 0) ; (1; -4)

 Thay tọa độ 3 điểm này vào hàm f’ ta  tìm được: a= 1/3; b= -1; c= -3.

Suy ra: f’ (x) = x2-2x-3 và f(x) = 1/3.x3-x2-3x+d.

Do (C) tiếp xúc với đường thẳng y= -9  tại điểm có hoành độ dương nên ta có:

F’(x) =0 khi và chỉ khi  x=3 ( x= -1 bị loại vì âm)

Như vậy (C) đi qua điểm (3; -9) ta tìm được d=0.

Vậy hàm số đề bài cho là f(x) = 1/3.x3-x2-3x.

Xét phương trình trình hoành độ giao điểm và trục hoành: 

. 1 3 x 3 - x 2 - 3 x = 0 ⇔ x = 0 ; x = 3 ± 3 5 2 S = ∫ 3 - 3 5 2 3 + 3 5 2 1 3 x 3 - x 2 - 3 x d x = 29 , 25

Chọn C.

28 tháng 2 2017

+Đồ thị hàm số đã cho có TCĐ là x= 1 và TCN là y= 2;  giao điểm của hai tiệm cận là

 I (1; 2) .

 Lấy điểm  M ( a ;   b )   ∈ C ⇒ b = 2 a - 1 a - 1   ( a > 1 ) .

+ Phương trình tiếp tuyến của (C )  tại M là  y = - 1 ( a - 1 ) 2 ( x - a ) + 2 a - 1 a - 1

+ Phương trình  đường thẳng MI  là  y = 1 ( a - 1 ) 2 ( x - 1 ) + 2

+ Tiếp tuyến tại M vuông góc với MI  nên ta có

- 1 ( a - 1 ) 2 . 1 ( a - 1 ) 2 = - 1 ⇔

Vì yêu cầu hoành độ và tung độ của M nguyên dương nên điểm cần tìm là  M( 2; 3).

Chọn D.