Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c,\text{PTHĐGD }y=x+1\text{ và }\left(d\right):\\ x+1=2x-3\\ \Leftrightarrow x=4\Leftrightarrow y=5\Leftrightarrow A\left(4;5\right)\\ \text{Để 3 đt đồng quy }\Leftrightarrow A\left(4;5\right)\in y=\left(m-1\right)x+5\\ \Leftrightarrow4m-4+5=5\\ \Leftrightarrow m=1\)
G/s điểm cố định đó là \(\left(x_0;y_0\right)\) nên khi đó:
\(y_0=\left(m-2\right)x_0+2\) (với mọi m)
\(\Leftrightarrow mx_0-2x_0+2-y_0=0\) (với mọi m)
\(\Leftrightarrow mx_0-\left(2x_0+y_0-2\right)=0\) (với mọi m)
\(\Rightarrow\hept{\begin{cases}x_0=0\\2x_0+y_0-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x_0=0\\y_0=2\end{cases}}\)
=> đcđ đó là (0;2)
Bài 2:
a: (d): y=ax+b
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)
b: Tọa độ giao của (d1) và (d2) là:
2/5x+1=-x+4 và y=-x+4
=>7/5x=3và y=-x+4
=>x=15/7 và y=-15/7+4=13/7
Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)
nên ta có hệ:
15/7a+b=13/7 và 1/2a+b=-1/4
=>a=59/46; b=-41/46
Giả sử điểm cố định mà đường thẳng đi qua có tọa độ \(\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:
\(y_0=\left(m+2\right)x_0+\left(m-3\right)y_0-m+8\)
\(\Leftrightarrow m\left(x_0+y_0-1\right)+2x_0-4y_0+8=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+y_0-1=0\\2x_0-4y_0+8=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{2}{3}\\y_0=\dfrac{5}{3}\end{matrix}\right.\) \(\Rightarrow\) điểm cố định có tọa độ \(\left(-\dfrac{2}{3};\dfrac{5}{3}\right)\)
giải hộ em bài này vs ạ
tìm điểm cố định mà đường thẳng y=(m+2).x+(m-3).y-m+8 luôn đi qua với mọi m
a/ Gọi ptđt (d) có dạng: y= ax+b (a\(\ne0\) )
Vì \(B\left(\frac{1}{2};-1\right)\in\left(d\right)\)
Thay xB= \(\frac{1}{2};y_B=-1\) vào (d):
\(\frac{1}{2}a+b=-1\)
Có a= -3
\(\Rightarrow\frac{1}{2}.\left(-3\right)+b=-1\Leftrightarrow b=\frac{1}{2}\)
\(\Rightarrow\left(d\right)y=-3x+\frac{1}{2}\)
b/ vì B(0;1)\(\in\left(d\right)\)
=> thay vào có b= 1
Có (d) tạo...
\(\Rightarrow\frac{x}{b}=\cot\left(180^0-150^0\right)=\sqrt{3}\Leftrightarrow x=\sqrt{3}\)
Thay vào có:
\(\sqrt{3}.a+1=0\Leftrightarrow a=\frac{-\sqrt{3}}{3}\)
(d) \(y=\frac{-\sqrt{3}}{3}x+1\)
Câu c vt lại đề nha
A