Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3y=6x-1
=>y=2x-1/3
Vậy: (a)//(e)
b: y=-0,5x-4
c: y=1/2x+3
d: =>2y=6-x
=>2y=(6-x)/2=-0,5x+3
f: =>y=0,5x+1=1/2x+1
Vậy: (c)//(f), (d)//(b)
1.
Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)
2.
\(\overrightarrow{MI}=\left(1;-2\right)\)
Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt
Phương trình:
\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)
1.
\(\left(C\right):x^2+y^2-2x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2+y^2=5\)
Đường tròn \(\left(C\right)\) có tâm \(I=\left(1;0\right)\), bán kính \(R=\sqrt{5}\)
Phương trình đường thẳng \(d_1\) có dạng: \(x+y+m=0\left(m\in R\right)\)
Mà \(d_1\) tiếp xúc với \(\left(C\right)\Rightarrow d\left(I;d_1\right)=\dfrac{\left|1+m\right|}{\sqrt{2}}=\sqrt{5}\)
\(\Leftrightarrow\left|m+1\right|=\sqrt{10}\)
\(\Leftrightarrow m=-1\pm\sqrt{10}\)
\(\Rightarrow\left[{}\begin{matrix}d_1:x+y-1+\sqrt{10}=0\\d_1:x+y-1-\sqrt{10}=0\end{matrix}\right.\)
2.
Phương trình đường thẳng \(\Delta\) có dạng: \(x-y+m=0\left(m\in R\right)\)
Ta có: \(d\left(I;\Delta\right)=\sqrt{R^2-\dfrac{MN^2}{4}}=2\)
\(\Leftrightarrow\dfrac{\left|m+1\right|}{\sqrt{2}}=2\)
\(\Leftrightarrow m=-1\pm2\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:x-y+1+2\sqrt{2}=0\\\Delta:x-y+1-2\sqrt{2}=0\end{matrix}\right.\)
\(1/\)
\(M\left(3;5\right);d:x+y+1=0\)
\(\)Gọi khoảng cách từ M đến d là \(l\)
\(l\left(M;d\right)=\dfrac{\left|x_M+y_M+1\right|}{\sqrt{1^2+1^2}}=\dfrac{\left|3+5+1\right|}{\sqrt{1^2+1^2}}=\dfrac{9\sqrt{2}}{2}\)
\(M\left(2;3\right);d:\left\{{}\begin{matrix}x-2t\\y=2+3t\end{matrix}\right.\)
d qua \(M\left(2;3\right)\) có \(VTCP\overrightarrow{u}=\left(-2;3\right)\Rightarrow VTPT\overrightarrow{n}=\left(3;2\right)\)
\(PTTQ\) của \(\Delta:3\left(x-2\right)+2\left(y-3\right)=0\)
\(\Rightarrow3x-6+2y-6=0\)
\(\Rightarrow3x+2y-12=0\)
Gọi khoảng cách từ M đến d là \(l\)
\(l\left(M;d\right)=\dfrac{\left|3.x_M+2.y_M-12\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|3.2+2.3-12\right|}{\sqrt{3^2+2^2}}=0\)
Song song với d nên có a = 3
=> Ý B hoặc C
Thay x = 1; y = -2 vào câu B thấy thỏa mãn
Vậy Chọn B
Đáp án A
Phương trình tiếp tuyến có dạng
∆: 2x+ y+ m= 0.
Đường tròn (C) :
(x- 3) 2+ (y +1) 2= 5 có tâm I( 3; -1) và bán kính
Đường thẳng tiếp xúc với đường tròn (C) khi
Vậy có 2 đường thẳng thỏa mãn là:
2x+ y= 0 và 2x+ y -10= 0
1: x^2+y^2+6x-2y=0
=>x^2+6x+9+y^2-2y+1=10
=>(x+3)^2+(y-1)^2=10
=>R=căn 10; I(-3;1)
Vì (d1)//(d) nên (d1): x-3y+c=0
Theo đề, ta có: d(I;(d1))=căn 10
=>\(\dfrac{\left|-3\cdot1+1\cdot\left(-3\right)+c\right|}{\sqrt{1^2+\left(-3\right)^2}}=\sqrt{10}\)
=>|c-6|=10
=>c=16 hoặc c=-4
Hai đường thẳng song song với nhau nếu chúng có cùng hệ số góc và tung độ gốc khác nhau.
Ta có: y + 2x – 1 = 0 ⇔ y = -2x + 1
Suy ra; đường thẳng y = - 2x + 1 song song với đường thẳng y = -2 x.
Chọn A.