Đường thẳng nào sau đây đi qua điểm N (1; 1)

A. ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

+) Thay x   =   1 ;   y   =   1   v à o   2 x   +   y   –   3   =   0 ta được 2 . 1   +   1   –   3   =   3   =   0 Nên điểm N thuộc đường thẳng   2 x   +   y   –   3   =   0

+) Thay x   =   1 ;   y   =   1   v à o   y   –   3   =   0   ta được  1   –   3   =   − 2 ≠     0

+) Thay  x   =   1 ;   y   =   1   v à o   4 x   +   2 y   =   0 ta được  4 . 1   +   2 . 1   =   6   ≠   0

+) Thay   x   =   1 ;   y   =   1   v à o   5 x   +   3 y   –   1   = 0 ta được  5 . 1   +   3 . 1   − 1   =   7   ≠   0

Vậy đường thẳng d: 2 x   +   y   –   3   =   0 đi qua N (1; 1)

Đáp án cần chọn là: A

25 tháng 11 2022

Bài 2:

a: (d): y=ax+b

Theo đề, ta có:

\(\left\{{}\begin{matrix}a\sqrt{2}+b=1\\a\cdot0+b=3\sqrt{2}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\sqrt{2}+1\\a=\dfrac{1-b}{\sqrt{2}}=\dfrac{1-3\sqrt{2}-1}{\sqrt{2}}=-3\end{matrix}\right.\)

b: Tọa độ giao của (d1) và (d2) là:

2/5x+1=-x+4 và y=-x+4

=>7/5x=3và y=-x+4

=>x=15/7 và y=-15/7+4=13/7

Vì (d) đi qua B(15/7;13/7) và C(1/2;-1/4)

nên ta có hệ:

15/7a+b=13/7 và 1/2a+b=-1/4

=>a=59/46; b=-41/46

25 tháng 6 2019

OMG!! Cái đề bài dài như Vạn Lý Trường Thành thế kia! Đau mắt quá! :D

a/ Gọi pt (d) có dạng: y= ax+b (\(a\ne0\) )

Có (d)//(d1)\(\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne-5\end{matrix}\right.\)

\(M\left(1;5\right)\in\left(d\right)\)

Thay xM= 1; yM= 5 vào (d) có:

\(2.1+b=5\Leftrightarrow b=3\) (t/m)

Vậy (d) y= 2x+3

b/ (d2) y= x+1

Vì (d)\(\perp\left(d_3\right)\)

\(\Rightarrow a.\frac{1}{2}=-1\Leftrightarrow a=-2\)

Vì (d) cắt (d2) tại điểm có tung độ =3

\(\Rightarrow\) Thay y=3 vào (d2) có:

x+1= 3=>x= 2

Thay y= 3, x= 2 vào (d)

\(-2.2+b=3\Leftrightarrow b=7\)

Vậy (d) y= -2x+7

c/ Vì (d) đi qua gốc toạ độ=> (d) y=ax

Xét PTHĐGĐ (d4) và (d5):

\(2x+4=-x-5\Leftrightarrow x=-3\Rightarrow y=-2\)

Thay x= -3; y= -2 vào (d)

-3a= -2

\(a=\frac{2}{3}\)

Vậy (d) y= \(\frac{2}{3}x\)

d/ Vì (d) vuông góc ....

\(\Rightarrow a.\frac{1}{3}=-1\Rightarrow a=-3\)

Vì A(3;-1) \(\in\left(d\right)\)

thay xA​= 3; yA= -1 vào (d)

\(-3.3+b=-1\Leftrightarrow b=8\)

Vậy (d) y= -3x+8

e/ Vì (d) cắt trục hoành....

\(\Rightarrow y=0;x=-1\)

Thay vào (d)

-a+b= 0(1)

Có N(-2;3)\(\in\left(d\right)\)

Thay xN= -2;yN= 3 vào (d)

-2a+b= 3(2)

Từ (1) và (2) ta có hpt:

\(\left\{{}\begin{matrix}b-a=0\\b-2a=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-3\\a=-3\end{matrix}\right.\)

Vậy (d)y= -3a-3

25 tháng 6 2019

Mình cảm ơn ạ ❤

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\) Xác định hệ số a,b trong mỗi trường hợp sau: a.(d) đi qua A(-1;4);B(2;-3) b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3 c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\) d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1 e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1 f.(d) có...
Đọc tiếp

Cho \(\left(d\right):y=ax+b\left(a\ne0\right)\)

Xác định hệ số a,b trong mỗi trường hợp sau:

a.(d) đi qua A(-1;4);B(2;-3)

b.(d) đi qua C(-5;3) và song song với đường thẳng y=2x+3

c.(d) đi qua D(4;-1) và vuông góc với đường thẳng \(y=-\frac{2}{3}x-5\)

d.(d) có tung độ gốc bằng 2 và cắt đường thẳng y=x-1 tại điểm có hoành độ bằng -1

e.(d) cắt (P) \(y=-x^2\) tại hai điểm có hoành độ lần lượt bằng 2;1

f.(d) có hệ số góc bằng 2 và đi qua điểm nằm trên đường thẳng y=2x-3 có tung độ bằng 1

Bài 2:

a)Tìm điểm cố định của các đường thẳng sau:

\(y=mx-2m-1\)

\(y=mx+m-1\)

y=(m+1)x+2m-3

b) Chứng minh đường thẳng \(y=\left(m-1\right)x-2m+3\) luôn đi qua 1 điểm cố định thuộc (P):y=\(\frac{1}{4}x^2\)

c)Chứng minh đường thẳng y=2mx+1-m luôn đi qua 1 điểm cố định thuộc (P) y=\(4x^2\)

3
NV
4 tháng 5 2019

Bài 1:

a/ \(\left\{{}\begin{matrix}4=-a+b\\-3=2a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{7}{3}\\b=\frac{5}{3}\end{matrix}\right.\)

b/ Do d song song với \(y=2x+3\Rightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\)

\(3=-5.2+b\Rightarrow b=13\)

c/ Do d vuông góc \(y=-\frac{2}{3}x-5\Rightarrow-\frac{2}{3}.a=-1\Rightarrow a=\frac{3}{2}\)

\(-1=\frac{3}{2}.4+b\Rightarrow b=-7\)

d/ \(b=2\Rightarrow y=ax+2\)

d cắt \(y=x-1\) tại điểm có hoành độ 1 \(\Rightarrow d\) đi qua điểm A(1;0)

\(\Rightarrow0=a+2\Rightarrow a=-2\)

e/ Thay 2 hoành độ vào pt (P) ta được \(\left\{{}\begin{matrix}A\left(2;-4\right)\\B\left(1;-1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-4=2a+b\\-1=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=2\end{matrix}\right.\)

f/ \(a=2\)

Thay tung độ y=1 vào pt đường thẳng được \(A\left(2;1\right)\)

\(\Rightarrow1=2.2+b\Rightarrow b=-3\)

NV
4 tháng 5 2019

Bài 2:

\(y=mx-2m-1\Rightarrow\left(x-2\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\) \(\Rightarrow A\left(2;-1\right)\)

\(y=mx+m-1\Rightarrow\left(x+1\right).m-\left(y+1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)

\(y=\left(m+1\right)x+2m-3\Rightarrow y=\left(m+1\right)x+2\left(m+1\right)-5\)

\(\Rightarrow\left(m+1\right)\left(x+2\right)-\left(y+5\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+2=0\\y+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)

30 tháng 6 2021

a) Đường thẳng (d) đi qua điểm A(1 ;0) => x = 1; y = 0 

Do đó: 0 = 2m.1 + 1 <=> 2m = -1 <=> m = -1/2

b) Phương trình hoành độ giao điểm giữa đường thẳng (d) và hàm số (P): y = 2x2 là:

   2x2 = 2mx + 1  <=> 2x2 - 2mx - 1 = 0

\(\Delta'=\left(-m\right)^2+2=m^2+2>0\)

=> phương trình luôn có 2 nghiệm phân biệt

Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=-\frac{1}{2}\end{cases}}\)

Theo bài ra, ta có: \(\hept{\begin{cases}x_1< x_2\\\left|x_2\right|-\left|x_1\right|=2021\end{cases}}\)

<=> \(\left(\left|x_2\right|-\left|x_1\right|\right)^2=2021^2\)

<=> \(x_1^2+x_2^2-2\left|x_1x_2\right|=2021^2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2-2\left|-\frac{1}{2}\right|=2021^2\)

<=> \(m^2+\frac{2.1}{2}-1=2021^2\)

<=> \(m^2=2021^2\)

<=> \(x=\pm2021\)

Vậy với m = \(\pm\)2021 để (d) vắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thõa mãn x1 < x2 và |x2| - |x1| = 2021

1, Biểu thức: \(\sqrt{\left(1+x^2\right)^2}\) bằng: A. 1 + x\(^2\) B. - ( 1 + x\(^2\) ) C. \(\pm\) ( 1 + x\(^2\) ) D. Kết quả khác 2, Biểu thức \(\sqrt{\frac{1-2x}{x^2}}\) xác định khi: A, \(x\ge\frac{1}{2}\) B, \(x\le\frac{1}{2}vàx\ne0\) C, \(x\le\frac{1}{2}\) D, \(x\ge\frac{1}{2}vàx\ne0\) 3, Trong các hàm số sau, hàm số nào đồng biến: A, \(y=x-2\) B, \(y=\frac{1}{2}x+1\) C, \(y=\sqrt{3}-\sqrt{2}\left(1-x\right)\) D,...
Đọc tiếp

1, Biểu thức: \(\sqrt{\left(1+x^2\right)^2}\) bằng:

A. 1 + x\(^2\)

B. - ( 1 + x\(^2\) )

C. \(\pm\) ( 1 + x\(^2\) )

D. Kết quả khác

2, Biểu thức \(\sqrt{\frac{1-2x}{x^2}}\) xác định khi:

A, \(x\ge\frac{1}{2}\)

B, \(x\le\frac{1}{2}vàx\ne0\)

C, \(x\le\frac{1}{2}\)

D, \(x\ge\frac{1}{2}vàx\ne0\)

3, Trong các hàm số sau, hàm số nào đồng biến:

A, \(y=x-2\)

B, \(y=\frac{1}{2}x+1\)

C, \(y=\sqrt{3}-\sqrt{2}\left(1-x\right)\)

D, \(y=6-3\left(x-1\right)\)

4, Cho hàm số \(y=-\frac{1}{2}x+4\) , kết luận nào sau đây đúng

A, Hàm số luôn đồng biến \(\forall\) x \(\ne\) 0

B, Đồ thị hàm số luôn đi qua gốc tọa độ

C, Đồ thị cắt trục hoành tại điểm 8

D, Đồ thi cắt trục tung tại điểm -4

5, Điểm thuộc đồ thị hàm số y=2x-5 là

A, (-2,-1) B, (3,2)

C, (4,3) D, (1,-3)

6, Đường thẳng song song với đường thẳng y=-\(\sqrt{2}\) x là

A, y=-\(\sqrt{2}\)x+1 B, y=-\(\sqrt{2}\) x -1

C, y=-\(\sqrt{2}\) x D, y=\(\sqrt{2}\) x

7, Cho 2 đường thẳng y=\(\frac{1}{2}\)x+5 và y=\(-\frac{1}{2}\)x+5. Hai đường thẳng đó:

A, Cắt nhau tại điểm có hoành độ bằng 5

B, Song song với nhau

C, Vuông góc với nhau

D, Cắt nhau tại điểm có tung độ bằng 5

8, Cho PT x-y=1 ( 1 ). Phương trình nào dưới đây có thể kết hợp vs ( 1 ) để được 1 HPT có vô số nghiệm:

A, 2y=2x-2 B, y=1+x

C, 2y=2-2x D, y=2x-2

( Câu 8 này có thể chỉ cho mình cách giải luôn không)

9, HPT nào dưới đây có thể kết hợp vs PT x+y=1 để được HPT có nghiệm duy nhất

A, 3y=-3x+3 B, 0x+y=1

C, 2y=2-2x D, y=2x-2

10, Cho tam giác MNP vuông tại M có MH là đường cao, cạnh MN \(\frac{\sqrt{3}}{2}\), \(\widehat{P}=60^0\) . Kết luận nào sau đây đúng.

A, Độ dài MP=\(\frac{\sqrt{3}}{2}\) B, Độ dài MP=\(\frac{\sqrt{4}}{3}\)

C, \(\widehat{MNP}=60^0\) D, \(\widehat{MNH}=30^0\)

Các bạn giải giúp mình nhanh với nhé, mình đang rất gấp. Cảm ơn mấy bạn trước

0
Câu 1: Trên cùng một mặt phẳng toạ độ Oxy, đồ thị của hai hàm số y = \(\frac{3}{2}x-2\) và y = \(-\frac{1}{2}x+2\) cắt nhau tại điểm M cso toạ độ là: A. ( 1; 2) B. ( 2;1) C. ( 0;-2) D. ( 0;2) Câu 2: Trong các phương trình sau, phương trình nào là phương trình bậc nhất hai ẩn x, y: A. ax + by = c ( a, b, c \(\in\) R ) B. ax + by = c ( a, b, c \(\in\) R, c \(\ne\) 0) C. ax + by = c ( a, b, c \(\in\) R, b \(\ne\)0, c \(\ne\) 0) D. A, B,...
Đọc tiếp

Câu 1: Trên cùng một mặt phẳng toạ độ Oxy, đồ thị của hai hàm số y = \(\frac{3}{2}x-2\) và y = \(-\frac{1}{2}x+2\) cắt nhau tại điểm M cso toạ độ là:

A. ( 1; 2)

B. ( 2;1)

C. ( 0;-2)

D. ( 0;2)

Câu 2: Trong các phương trình sau, phương trình nào là phương trình bậc nhất hai ẩn x, y:

A. ax + by = c ( a, b, c \(\in\) R )

B. ax + by = c ( a, b, c \(\in\) R, c \(\ne\) 0)

C. ax + by = c ( a, b, c \(\in\) R, b \(\ne\)0, c \(\ne\) 0)

D. A, B, C đều đúng.

Câu 3: Cho hàm số \(y=\frac{m+2}{m^2+1}x+m-2\). Tìm m để hàm số nghịch biến, ta có kết quả sau:

A. m > -2

B. m \(\ne\pm1\)

C. m < -2

D. m \(\ne\) -2

Câu 4: Đồ thị hàm số y = ax + b ( a \(\ne\) 0) là:

A. Một đường thẳng đi qua gốc toạ độ

B. Một đường thẳng đi qua 2 điểm M ( b;0) và N ( 0;\(-\frac{b}{a}\))

C. Một đường cong Parabol

D. Một đường thẳng đi qua 2 điểm A( 0;b) và B(\(-\frac{b}{a}\);0)

Câu 5: Nghiệm tổng quát của phương trình: -3x + 2y =3 là:

A. \(\left\{{}\begin{matrix}x\in R\\y=\frac{3}{2}x+1\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}x=\frac{2}{3}y-1\\y\in R\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

D. Có hai câu đúng

Câu 6: Cho 2 đường thẳng y = ( m+1)x - 2k ( m \(\ne\) -1) và y = ( 2m - 3)x + k + 1 (m \(\ne\) \(\frac{3}{2}\)). Hai đường thẳng trên trùng nhau khi:

A. m = 4 hay k = \(-\frac{1}{3}\)

B. m = 4 và k = \(-\frac{1}{3}\)

C. m = 4 và k \(\in\) R

D. k = \(-\frac{1}{3}\)và k \(\in\) R

Câu 7: Nghiệm tổng quát của phương trình: 20x + 0y = 25

A. \(\left\{{}\begin{matrix}x=1,25\\y=1\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}x=1,25\\y\in R\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}x\in R\\y\in R\end{matrix}\right.\)

D. A, B đều đúng

Câu 8: Số nghiệm của phương trình: ax + by = c ( a, b, c \(\in\) R; a \(\ne\) 0) hoặc ( b \(\ne\) 0) là:

A. Vô số

B. 0

C. 1

D. 2

Câu 9: Cho phương trình: \(x^2-2x+m=0\). Phương trình phân biệt thì:

A. m > 1

B. m > -1

C. m < 1

D. A, B, C đều đúng

Câu 10: Cho hệ phương trình \(\left\{{}\begin{matrix}ax+3y=4\\x+by=-2\end{matrix}\right.\) với giá trị nào của a,b để hệ phương trình có cặp nghiệm ( -1;2)

A. \(\left\{{}\begin{matrix}a=2\\b=\frac{1}{2}\end{matrix}\right.\)

B. \(\left\{{}\begin{matrix}a=2\\b=0\end{matrix}\right.\)

C. \(\left\{{}\begin{matrix}a=2\\b=-\frac{1}{2}\end{matrix}\right.\)

D. \(\left\{{}\begin{matrix}a=-2\\b=-\frac{1}{2}\end{matrix}\right.\)

0
1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\) b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\) c) \(x,y,z>0.\) Min...
Đọc tiếp

1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)

b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)

c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)

d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)

e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)

f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)

g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)

3
26 tháng 4 2020

Câu 1 chuyên phan bội châu

câu c hà nội

câu g khoa học tự nhiên

câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ

câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)

Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !

25 tháng 4 2020

Câu c quen thuộc, chém trước:

Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)

Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)

Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)

\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)

Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)

\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)

Done.

30 tháng 5 2017

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất

Ôn tập Hàm số bậc nhất