Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này lên lớp 8 mới hok nhưng bạn chịu khó hiểu nha :
\(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
Ta thấy dấu - vs dấu + triệt tiêu nha còn :
\(=a^3+b^3\)
Thế là xong
Ủng hộ mik nha
Thnaks
Đa thức 3x2 – 8x +1 có các hạng tử là: 3x2 ; -8x ; 1
Ta có: 2x . 3x2 = (2.3). (x.x2) = 6x3
2x. (-8x) = [2.(-8) ]. (x.x) = -16x2
2x. 1 = 2x
Vậy 2x.(3x2 – 8x + 1) = 6x3 -16x2 + 2x
Ta có : -78 x 31 - 78 x 24 - 78 x 17 + 22 x 72
= 78 x (-31 - 24 - 17) + 22 x 72
= -78 x 72 + 22 x 72
= 72 x (-78 + 22)
= 72 x -56
= -4032
1) (a+b).(a+b)=(a+b)2=a2+2ab+b2
2) (a-b)2=a2-2ab+b2
3) (a+b).(a-b)=a2-b2
4) (a+b)3=a3+3a2b+3ab2+b3
5) (a-b)3=a3-3a2b+3ab2-b3
6) (a+b).(a2-ab+b2)=a3+b3
7) (a-b).(a2+ab+b2)=a3-b3
mấy cái ày là hằng đẳng thức đáng nhớ mà
lấy a+a b+b
lấy b^2-a
lấy a.b b.a
a^3 +b
b^3-a
hai câu cuối thì mình k biết
1) \(\left(a+b\right).\left(a+b\right)=a.\left(a+b\right)+b.\left(a+b\right)=a^2+ab+b^2+ab\)
2) \(\left(a-b\right)^2=\left(a-b\right).\left(a-b\right)=a.\left(a-b\right)-b.\left(a-b\right)=a^2-ab-ab+b^2\)
\(=a^2+\left(-ab\right)+\left(-ab\right)+b^2\)
3) \(\left(a+b\right).\left(a-b\right)=a.\left(a-b\right)+b.\left(a-b\right)=a^2-ab+ab-b^2=a^2-b^2\)
\(=a^2+-\left(b^2\right)\)
4) \(\left(a+b\right)^3=\left(a+b\right).\left(a+b\right).\left(a+b\right)=a.\left(a+b\right).\left(a+b\right)+b.\left(a+b\right).\left(a+b\right)\)
\(=\left[a.\left(a+b\right)\right].\left(a+b\right)+\left[b.\left(a+b\right)\right].\left(a+b\right)=\left(a^2+ab\right).\left(a+b\right)+\left(ab+b^2\right).\left(a+b\right)\)
\(=a^2.\left(a+b\right)+ab.\left(a+b\right)+ab.\left(a+b\right)+b^2.\left(a+b\right)\)
\(=a^3+a^2b+a^2b+ab^2+a^2b+ab^2+b^2a+b^3\)
5) \(\left(a-b\right)^3=\left(a-b\right).\left(a-b\right).\left(a-b\right)=a.\left(a-b\right).\left(a-b\right)-b.\left(a-b\right).\left(a-b\right)\)
\(=\left(a^2-ab\right).\left(a-b\right)-\left(ba-b^2\right).\left(a-b\right)\)
\(=a^2.\left(a-b\right)-ab.\left(a-b\right)-ba.\left(a-b\right)+b^2.\left(a-b\right)\)
\(=a^3-a^2b-a^2b+ab^2-ba^2+b^2a-ba^2+b^2a-b^3\)
6) \(\left(a+b\right).\left(a^2-ab+b^2\right)=a.\left(a^2-ab+b^2\right)+b.\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+ba^2-ab^2+b^3\)
\(=a^3+b^3\)
7) \(\left(a-b\right).\left(a^2+ab+b^2\right)=a.\left(a^2+ab+b^2\right)-b.\left(a^2+ab+b^2\right)\)
\(=a^3+a^2b+ab^2-ba^2-ab^2-b^3\)
\(=a^3-b^3\)
1 a^2+2ab+b^2
2 a^2-2ab+b^2
3 a^2-b^2
4 a^3+3a^2b+3ab^2+b^3
5 a^3-3a^2b+3ab^2-b^3
6 a^3+b^3
7 a^3-b^3
1) (a+b)3=(a+b)(a+b)(a+b)=(a2+ab+ab+b2)(a+b)=(a2+2ab+b2)(a+b)(a3+2a2b+ab2)+(a2b+2ab2+b3)=a3+2a2b+ab2+a2b+2ab2+b3
=a3+3a2b+3ab2+b3
a) \(\left(a+b\right)\left(x+y\right)\)
\(=a\left(x+y\right)+b\left(x+y\right)\)
\(=ax+ay+bx+by\)
b) \(\left(2x+3y\right)\left(5x-2y\right)\)
\(=2x\left(5x-2y\right)+3y\left(5x-2y\right)\)
\(=10x^2-4xy+15xy-6y^2\)
\(=10x^2+11xy-6y^2\)