Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sau khi đo góc ta thấy cặp góc \(\widehat {{A_1}}\) và \(\widehat {\rm{D}}\), \(\widehat {{{\rm{C}}_{\rm{1}}}}\) và \(\widehat {\rm{D}}\) bằng nhau
Mà các góc ở vị trí đồng vị
Suy ra: \(AB\) // \(CD\); \(AD\) // \(BC\)
Vì ABCD là hình thang cân
\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)
Nên: \(\widehat{D}=180^o-\widehat{A}=180^o-65^o=115^o\)
Mặt khác ta có ABCD là hình thang cân nên:
\(\widehat{C}=\widehat{D}=115^o\)
Vậy chọn đáp án A
Xét tam giác BEC vuông tại C có:
\(\begin{array}{l}\widehat {BEC} + \widehat {EBC} + \widehat {BCE} = {180^o}\\ \Rightarrow \widehat {BEC} + {39^o} + {30^o} = {180^o}\\ \Rightarrow \widehat {BEC} = {180^o} - {39^o} - {30^o} = {51^o}\end{array}\)
Mà: \(\begin{array}{l}\widehat {EBA} + \widehat {EBC} = {90^o}\\ \Rightarrow \widehat {EBA} = {90^o} - \widehat {EBC} = {90^o} - {39^o} = {51^o}\end{array}\)
Xét tam giác AEB có:
\(\begin{array}{l}\widehat {A{\rm{E}}B} + \widehat {E{\rm{A}}B} + \widehat {EBA} = {180^o}\\ \Rightarrow \widehat {E{\rm{A}}B} = {180^o} - \widehat {A{\rm{E}}B} - \widehat {EBA} = {180^o} - {78^o} - {51^o} = {51^o}\end{array}\)
a) Vì \(ABCD\) là hình bình hành (gt)
Suy ra \(O\) là trung điểm của \(AC\), \(BD\)
\(AB = CD\); \(AD = BC\); \(AB\) // \(CD\); \(AD\) // \(BC\)
Nếu \(\widehat {{\rm{BAD}}} = 90^\circ \) suy ra \(AB \bot AD\)
Mà \(AB\) // \(CD\); \(AD\) // \(BC\)
Suy ra \(AD \bot CD;\;AB \bot BC\)
Suy ra \(\widehat {ADC} = \widehat {ABC} = 90^\circ \)
b) Xét \(\Delta BAD\) và \(\Delta CDA\) ta có:
\(BA = CD\) (gt)
\(AD\) chung
\(BD = AC\) (gt)
Suy ra \(\Delta BAD = \Delta CDA\) (c-c-c)
Suy ra \(\widehat {{\rm{BAD}}} = \widehat {{\rm{CDA}}}\) (hai góc tương ứng)
Mà \(\widehat {BAD} + \widehat {CDA} = 180^\circ \)(do \(AB\) // \(CD\) , cặp góc trong cùng phía)
Suy ra \(\widehat {BAD} = \widehat {CDA} = 90^\circ \)
Do ABCD là hình thoi nên DB là tia phân giác của \(\widehat {CDA}\)
Mà: \(\widehat {CDB} = {40^0} \Rightarrow \widehat {CDA} = {2.40^0} = {80^0} \Rightarrow \widehat {CBA} = \widehat {CDA} = {80^0}\)
Mặt khác:
\(\begin{array}{l}\widehat {BAD} + \widehat {CBA} + \widehat {CDA} + \widehat {BCD} = {360^0}\\\widehat {BAD} + {80^0} + {80^0} + \widehat {BCD} = {360^0}\end{array}\)
(do ABCD là hình thoi nên \(\widehat {BAD} = \widehat {BCD}\))
\( \Rightarrow \widehat {BAD} = \widehat {BCD} = \frac{{{{360}^0} - {{80}^0} - {{80}^0}}}{2} = {100^0}\)
Vậy hình thoi ABCD có: \(\widehat {BCA} = \widehat {CDA} = {80^0};\widehat {BAD} = \widehat {BCD} = {100^0}\)
Xét \(\Delta ABD\)có: \(\widehat {BAD} + \widehat {ABD} + \widehat {BDA} = {180^0}\)
Xét \(\Delta BCD\)có: \(\widehat {BCD} + \widehat {BDC} + \widehat {DBC} = {180^0}\)
\(\begin{array}{l} \Rightarrow \widehat {BAD} + \widehat {ABD} + \widehat {BDA} = \widehat {BCD} + \widehat {BDC} + \widehat {DBC}\\ \Rightarrow \widehat {DAB} = \widehat {DBC}(do\,\widehat {BAD} = \widehat {BCD};\widehat {ABD} = \widehat {BDC})\end{array}\)
Xét \(\Delta ABD\) và \(\Delta CDB\) có:
\(\begin{array}{l}\left. \begin{array}{l}\widehat {ABD} = \widehat {CDB}\\BDchung\\\widehat {DBA} = \widehat {DBC}\end{array} \right\} \Rightarrow \Delta ABD = \Delta CDB(g.c.g)\\ \Rightarrow AB = DC\\AD = CB\end{array}\)
Suy ra tứ giác ABCD là hình bình hành vì có cặp cạnh đối bằng nhau
a, Tứ giác ABCD có:
\(\widehat {ABC} + \widehat {BCD} + \widehat {CDA} + \widehat {DAB} = {360^0}\)
\(\widehat {ABC} + \widehat {DAB} + \widehat {ABC} + \widehat {DAB} = {360^0}\)(do \(\widehat {DAB} = \widehat {BCD};\widehat {ABC} = \widehat {CDA}\))
\(\begin{array}{l}2\widehat {ABC} + 2\widehat {DAB} = {360^0}\\\widehat {ABC} + \widehat {DAB} = \dfrac{{{{360}^0}}}{2} = {180^0}\end{array}\)
b, Ta có: \(\widehat {xAD} + \widehat {DAB} = {180^0}\)(do tia Ax là tia đối của tia AB)
Nên
\(\begin{array}{l}\widehat {xAD} + \widehat {DAB} = \widehat {ABC} + \widehat {DAB}\\ \Rightarrow \widehat {xAD} = \widehat {ABC}\end{array}\)
Suy ra AD//BC (hai góc đồng vị bằng nhau)
c, Vì AD//BC \( \Rightarrow \widehat {ADB} = \widehat {DBC}\) (2 góc so le trong)
Xét \(\Delta A{\rm{D}}B\) có \(\widehat {ABD} = {180^0} - \widehat {ADB} - \widehat {DAB} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 1 \right)\)
( vì \(\widehat {ADB} = \widehat {DBC};\widehat {DAB} = \widehat {BCD})\)
Xét \(\Delta CDB\) có: \(\widehat {BDC} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 2 \right)\)
Từ (1), (2) suy ra \(\widehat {ABD} =\widehat {BDC}\)
Xét \(\Delta ADB\) và \(\Delta BCD\)có:
\(\left. \begin{array}{l}DBchung\\\widehat {ABD} = \widehat {BDC}\\\widehat {ABD} = \widehat {DBC}\end{array} \right\} \Rightarrow \Delta A{\rm{D}}B = \Delta C{\rm{D}}B \Rightarrow A{\rm{D}} = BC,AB = CB\)
Suy ra tứ giác ABCD có cặp cạnh đối bằng nhau nên ABCD là hình bình hành.
Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên ta có:
\(\begin{array}{l}x + 2x + 3x + 4x = 360^\circ \\10x = 360^\circ \\x = 360^\circ :10\\x = 36^\circ \end{array}\)
Suy ra:
\(\widehat A = 36^\circ ;\;\widehat B = 72^\circ ;\;\widehat C = 108^\circ ;\;\widehat D = 144^\circ \)
Xét tam giác ABD cân tại A (vì AB = AD), ta có:
• \(\widehat {AB{\rm{D}}} = \widehat {A{\rm{D}}B} = {30^o}\)
• \(\widehat A + \widehat {AB{\rm{D}}} + \widehat {A{\rm{D}}B} = {180^o}\) hay \(\widehat A + {30^o} + {30^o} = {180^o}\)
Suy ra \(\widehat A\)=180°−30°−30°=120o
Vì AB // CD nên \(\widehat {A{\rm{B}}D} = \widehat {B{\rm{D}}C} = {30^o}\) (hai góc so le trong).
Do đó \(\widehat {ADC} = \widehat {A{\rm{D}}B} + \widehat {C{\rm{D}}B}\)=30°+30°=60°
Vì tứ giác ABCD là hình thang cân nên \(\widehat {ADC} = \widehat C\)=60°
Ta có: \(\widehat A + \widehat {ABC} + \widehat C + \widehat {A{\rm{D}}C} = {360^o}\)
120°+60°+60°+\(\widehat {A{\rm{B}}C}\)=360°
240°+\(\widehat {A{\rm{B}}C}\)=360°
Suy ra =360°−240°=120°
Vậy số đo các góc của hình thang ABCD là \(\widehat A = {120^o};\widehat {ABC} = {120^o};\widehat {C} = {60^o};\widehat {A{\rm{D}}C} = {60^o}\).
Sau khi đo, ta thấy bốn góc \(\widehat {\rm{A}}\), \(\widehat {\rm{B}}\), \(\widehat {\rm{C}}\), \(\widehat {\rm{D}}\) có số đo bằng nhau và bằng \(90^\circ \)