Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Thêm vào hai chữ số 1 vào tập hợp các chữ số đã cho ta được tập E = {1,1,1,2,3,4}
Xem các số 1 là khác nhau thì mỗi hoán vị của 6 phần tử của E cho ta một số có 6 chữ số thỏa mãn bài toán. Như vậy ta có 6! số. Tuy nhiên khi hoán vị vủa ba số 1 cho nhau thì giá trị con số không thay đổi nên mỗi số như vậy ta đếm chúng đến 3! lần.
Vậy số các số thỏa mãn yêu cầu bài toán là 6 ! 3 ! = 4 . 5 . 6 = 120 s ố .
Chú ý: Ta có thể giải như sau, ta gọi số 6 chữ số cần tìm là a b c d e f , chọn 3 vị trí trong 6 vị trí để đặt ba chữ số 1 có C 6 3 cách, xếp 3 chữ số 2, 3, 4 vào ba vị trí còn lại có 3! cách do đó C 6 3 . 3 ! = 120
Đáp án là A.
Gọi số cần lập có dạng: a 1 a 2 a 3 a 4 a 5 ¯
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 3 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 4 3
• Hoán vị 2 nhóm trên có 5! cách
* Các số có số a 1 = 0
• Chọn 2 số lẻ thuộc nhóm 1 ; 3 ; 5 ; 7 ⇒ C 4 2
• Chọn 2 số chẳn trong nhóm 0 ; 2 ; 4 ; 6 ⇒ C 3 2
• Hoán vị 2 nhóm trên có 4! cách
Vậy các số cần tìm: C 4 2 . C 4 3 .5 ! − C 4 2 . C 3 2 .4 ! = 2448 số
Đáp án C
Gọi số đó là a b c ¯
Số cách chọn a : C 5 1 = 5
Số cách chọn b c : A 5 2 = 20
Số các số gồm 3 chữ số khác nhau lập được là: 5.20 = 100
Đáp án C
Gọi số đó là a b c
Số cách chọn C 5 1 = 5
Số cách chọn A 5 2 = 20
Số các số gồm 3 chữ số khác nhau lập được là: 5.20=100
Đáp án D.
Số cần lập có dạng:
a b ¯ a ; b ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; a < b .
Với mỗi cách chọn 2 số từ các số đã cho ta được một số thõa mãn yêu cầu bài toán.
Do đó có C 9 2 = 36 số.
Đáp án D
Vì số 0 không thể đặt ở vị trí đầu tiên, nên vị trí đầu tiên có 6 cách chọn.
Với mỗi một cách chọn, ta có 6! Cách sắp xếp cho 6 vị trí còn lại.
Vậy số cách chọn cần tìm là 6.6 ! 2 = 2160 (chia cho 2 vì số 5 lặp 2 lần).