\(\widehat{A}=40^o\) và đường cao AH = 4 cm.

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40o trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là , . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán



11 tháng 4 2017

Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40o trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là \(\widehat{A}\) , \(\widehat{A'}\). Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán


Trình tự dựng gồm 3 bước:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 40trên đoạn thẳng BC.

- Dựng đường thẳng xy song song với BC và cách BC một khoảng là 4cm như sau:

Trên đường trung trực d của đoạn thẳng BC lấy đoạn HH' = 4cm (dùng thước có chia khoảng mm). Dựng đường thẳng xy vuông góc với HH' tại H

Gọi giao điểm xy và cung chứa góc là . Khi đó tam giác ABC hoặc A'BC đều thỏa yêu cầu của đề toán

Cách dựng:

+ Dựng đoạn thẳng BC = 6cm.

+ Dựng cung chứa góc 40º trên đoạn thẳng BC (tương tự bài 46) :

Dựng tia Bx sao cho Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

Dựng tia By ⊥ Bx.

Dựng đường trung trực của BC cắt By tại O.

Dựng đường tròn (O; OB).

Cung lớn BC chính là cung chứa góc 40º dựng trên đoạn BC.

+ Dựng đường thẳng d song song với BC và cách BC một đoạn 4cm:

Lấy D là trung điểm BC.

Trên đường trung trực của BC lấy D’ sao cho DD’ = 4cm.

Dựng đường thẳng d đi qua D’ và vuông góc với DD’.

+ Đường thẳng d cắt cung lớn BC tại A.

Ta được ΔABC cần dựng.

Chứng minh:

+ Theo cách dựng có BC = 6cm.

+ A ∈ cung chứa góc 40º dựng trên đoạn BC

Giải bài 49 trang 87 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ A ∈ d song song với BC và cách BC 4cm

⇒ AH = DD’ = 4cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài.

Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.

17 tháng 4 2017

Giải bài 99 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Trình tự dựng gồm các bước sau:

- Dựng đoạn thẳng BC = 6cm

- Dựng cung chứa góc 80 trên đoạn thẳng BC (cung BmC).

- Trên đường vuông góc với BC tại I(I là trung điểm BC), chọn điểm K sao cho IK = 2cm. Từ K dựng đường thẳng vuông góc với IK. Đường thẳng này cắt cung chứa góc BmC tại A và A'.

ΔABC (hoặc ΔA'BC) là tam giác thỏa mãn yêu cầu đề bài.

23 tháng 3 2020

A B C H

\(S_{\Delta ABC}=\frac{AH\cdot BC}{2}=\frac{6\cdot10}{2}=\frac{60}{2}=30\left(cm^2\right)\)

Vậy \(S_{\Delta ABC}=30cm^2\)

23 tháng 3 2020

Cảm ơn bạn đã trả lời câu hỏi. Nhưng bạn trả lời sai rồi

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}=53^0\)

=>\(\widehat{C}=37^0\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8(cm)

20 tháng 5 2019

bai-98-trang-122-sach-bai-tap-toan-9-tap-1-3.PNG (292×165)

a. Ta có: AB2 = 62 = 36

AC2 = 4,52 = 20,25

BC2 = 7,52 = 56,25

Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

Kẻ AH ⊥ BC

Ta có: AH.BC = AB.AC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.
9 tháng 6 2019

Ta có:\(sin\widehat{BAH}\)=\(\frac{2}{3}\)\(\Rightarrow sin\widehat{BAH}\)\(\approx sin42^o\)

                                           \(\Rightarrow\widehat{BAH}\)=\(42^o\)

Vì AH là đường cao => \(AH\perp BC=\left\{H\right\}\)

                                \(\Rightarrow\widehat{AHB}\)=\(\widehat{AHC}\)=\(90^O\)

Xét tam giác AHB vuông tại H:

   \(\widehat{BAH}\)+\(\widehat{B}\)=\(90^O\)\(\Rightarrow\widehat{B}\)=\(48^O\)

Xét tam giác ABC vuông tại A, đường cao AH:

   +) \(sin\widehat{B}\)=\(\frac{AC}{BC}\)\(\Leftrightarrow sin48^o=\frac{3}{BC}\)

                                      \(\Rightarrow BC=4\left(cm\right)\)

   +) \(BC^2=AB^2+AC^2\)

      \(\Rightarrow AB=\sqrt{BC^2-AC^2}\)

       \(\Rightarrow AB\approx2,6\left(cm\right)\)

   +) \(AH.BC=AB.AC\)(hệ thức giữa cạnh và đường cao)

       \(\Rightarrow AH=\frac{AB.AC}{BC}\)

        \(\Rightarrow AH\approx2\left(cm\right)\)

\(S\)ABC =\(\frac{AH.BC}{2}\)\(4\left(cm^2\right)\)

*Mình sợ sẽ có sai sót nên bạn kiểm tra lại nhé

~HỌC TỐT~