Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, hệ\(\Leftrightarrow\)$\left \{ {{x>\frac{1}{2} } \atop {x<m+2}} \right.$
để hệ có nghiệm ⇒ m+2< $\frac{1}{2}$ ⇒ m<$\frac{-3}{2}$
\(\left\{{}\begin{matrix}x^2-3x-4< 0\\\left(m-1\right)x-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+1\right)\left(x-4\right)< 0\\\left(m-1\right)x-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\\left(m-1\right)x-2>0\end{matrix}\right.\left(1\right)\)
TH1: \(m< 1\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\x< \dfrac{2}{m-1}\end{matrix}\right.\)
Yêu cầu bài toán thỏa mãn khi \(\dfrac{2}{m-1}>-1\Leftrightarrow2< -m+1\Leftrightarrow m< -1\)
\(\Rightarrow m< -1\)
TH2: \(m=1\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\-2>0\end{matrix}\right.\left(vn\right)\)
TH3: \(m>1\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x< 4\\x>\dfrac{2}{m-1}\end{matrix}\right.\)
\(\dfrac{2}{m-1}< 4\Leftrightarrow4m-4>2\Leftrightarrow m>\dfrac{3}{2}\)
\(\Rightarrow m>\dfrac{3}{2}\)
Vậy \(m< -1;m>\dfrac{3}{2}\)
1.
\(\left\{{}\begin{matrix}\left(x^2-2x\right)\left(y^2-6y\right)=m\\\left(x^2-2x\right)+\left(y^2-6y\right)=3m\end{matrix}\right.\)
Theo Viet đảo, \(x^2-2x\ge-1\) và \(y^2-6y\ge-9\) là nghiệm của:
\(t^2-3m.t+m=0\) (1)
Hệ đã cho có đúng 3 nghiệm khi và chỉ khi:
TH1: (1) có 1 nghiệm \(t_1=-1\) và 1 nghiệm \(t_2>-9\)
\(t=-1\Rightarrow1+3m+m=0\Rightarrow m=-\dfrac{1}{4}\)
\(\Rightarrow t_2=\dfrac{1}{4}\) (thỏa mãn)
TH2: (1) có 1 nghiệm \(t_1=-9\) và 1 nghiệm \(t_2>-1\)
\(t_1=-9\Rightarrow81+27m+m=0\Leftrightarrow m=-\dfrac{81}{28}\)
\(\Rightarrow t_2=\dfrac{9}{28}\) (thỏa mãn)
Vậy \(m=\left\{-\dfrac{1}{4};-\dfrac{81}{28}\right\}\)
2. Pt bậc 2 có nghiệm duy nhất thì nó là nghiệm kép
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(m+3\right)^2-4\left(2m-1\right)=0\left(vô-nghiệm\right)\\\dfrac{m+3}{2}\le3\end{matrix}\right.\)
Ko tồn tại m thỏa mãn
Hoặc là ngôn ngữ đề bài có vấn đề, ý của người ra đề là "phương trình đã cho có 2 nghiệm, trong đó có đúng 1 nghiệm thỏa mãn \(x\le3\)"?
Lời giải:
Giả sử cả 2 pt trên đều không có nghiệm.
Khi đó:
\(\left\{\begin{matrix} \Delta_1=a^2-4b< 0\\ \Delta_2=c^2-4d< 0\end{matrix}\right.\)
\(\Rightarrow a^2+c^2< 4(b+d)\)
Kết hợp với đk: \(ac\geq 2(b+d)\Rightarrow 2ac> a^2+c^2\)
\(\Leftrightarrow a^2+c^2-2ca< 0\Leftrightarrow (a-c)^2< 0\) (vô lý)
Do đó điều giả sử là sai.
Tức là ít nhất 1 trong 2 pt trên phải có nghiệm.