K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)

Vậy ...................

b/ ĐKXĐ:\(x\ne2;x\ne5\)

.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x^2-10x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)

Vậy ..............

24 tháng 2 2022

`Answer:`

`1.`

a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)

b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)

\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)

\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)

\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)

\(\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)

`2.`

\(ĐKXĐ:x\ne-m-2;x\ne m-2\)

Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)

a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)

b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì

\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)

a: =>(x^2-2x+1-1)^2+2(x-1)^2=1

=>(x-1)^4-2(x-1)^2+1+2(x-1)^2=1

=>(x-1)^4=0

=>x-1=0

=>x=1

b: =>(x^2+2)^2+3x(x^2+2)+2x^2-20x^2=0

=>(x^2+2)^2+3x(x^2+2)-18x^2=0

=>(x^2+2+6x)(x^2-3x+2)=0

=>\(x\in\left\{-3\pm\sqrt{7};1;2\right\}\)

5 tháng 11 2017

giúp mình bài ni với :3x^2(x+1)-5x(x+1)^2+4(x+1)

23 tháng 10 2016

a)x(x+1)(x+2)(x+3)+1

= (x2 + 3x)(x2 + 3x + 2) + 1

Đặt x2 + 3x = t, ta có:

t(t + 2) + 1

= t2 + 2t + 1

= (t + 1)2

= (x2 + 3x)2

b)(x^2+x+1)(x^2+3x+1)+x^2

Đặt x2 + x + 1 = t, ta có:

t(t - 2x) + x2

= t2 - 2xt + x2

= (t - x)2

= (x2 + x + 1 - x)2

= (x2 + 1)2

13 tháng 8 2018

\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)-3\)

\(=x\left(x-3\right)\left(x-1\right)\left(x-2\right)-3\)

\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)

Đặt \(x^2-3x+1=t\)

\(=\left(t-1\right)\left(t+1\right)-3\)

\(=t^2-1-3=t^2-4\)

\(=\left(t-2\right)\left(t+2\right)\)

\(=\left(x^2-3x+1-2\right)\left(x^2-3x+1+2\right)\)

\(=\left(x^2-3x-1\right)\left(x^2-3x+3\right)\)

9 tháng 4 2018

có ai giải cho đâu mà cảm ơn

9 tháng 4 2018

a, 3x-2=2x-3 <=> 3x-2x=-3+2 <=> x=-1

b, 2x+3=5x+9 <=> 5x-2x=3-9 <=> 3x=-6 <=> x=-2

c, 5-2x=7 <=> 2x=5-7 <=> 2x=-2 <=> x=-1

d, x(x+2)=x(x+3) <=> x^2 + 2x = x^2 + 3x <=> 3x-2x=0 <=> x=0

e,