K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

a) \(63^7\)và \(16^{12}\)
Có \(63^7< 64^7=\left(2^6\right)^7=2^{42}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\)=) \(63^7< 16^{12}\)
b) \(17^{14}\)và \(31^{11}\)
Có \(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56}\)
\(31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\)
Vì \(2^{56}>2^{55}\Rightarrow17^{14}>16^{14}>32^{11}>31^{11}\)
=) \(17^{14}>31^{11}\)
c) \(2^{67}\)và \(5^{21}\)
Có \(5^{21}< 8^{21}=\left(2^3\right)^{21}=2^{63}\)
Vì \(2^{67}>2^{63}\Rightarrow2^{67}>8^{21}>5^{21}\)
=) \(2^{67}>5^{21}\)

20 tháng 6 2017

a/ \(63^7< 64^7=\left(4^3\right)^7=4^{21}\)

    \(16^{12}=\left(4^2\right)^{12}=4^{24}\)

Suy ra \(63^7< 4^{21}< 4^{24}=16^{12}\)

Vậy \(63^7< 16^{12}\)

    

30 tháng 7 2019

\(63^7< 64^7=\left(2^6\right)^7=2^{42};16^{12}=\left(2^4\right)^{12}=2^{48}\Rightarrow63^7< 16^{12}\)

\(17^{14}>16^{14}=\left(2^4\right)^{14}=2^{56};31^{11}< 32^{11}=\left(2^5\right)^{11}=2^{55}\Rightarrow17^{14}>31^{11}\)

\(2^{67}=2^{63}.16=128^9.16;5^{21}=125^7\Rightarrow2^{67}>5^{21}\)

\(2^{100}=1024^{10};10^{30}=1000^{10}\Rightarrow\frac{2^{10}}{10^3}=\frac{128}{125}< \frac{20}{19}< \frac{19}{18}< .....< \frac{11}{10}\Rightarrow\frac{2^{100}}{10^3}=\left(\frac{2^{10}}{10^3}\right)^{10}< \frac{20}{19}.\frac{19}{18}.....\frac{11}{10}=2\Rightarrow2^{100}< 2.10^{30}< 10.10^{30}=10^{31}\)

22 tháng 8 2023

\(1)\)\(-\dfrac{10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)

\(=\dfrac{10}{11}\left(-\dfrac{8}{9}+\dfrac{7}{18}\right)\)

\(=\dfrac{10}{11}\left(\dfrac{-16}{18}+\dfrac{7}{18}\right)\)

\(=\dfrac{10}{11}.\left(-\dfrac{1}{2}\right)=-\dfrac{5}{11}\)

\(2)\)\(\dfrac{12}{25}.\dfrac{23}{7}-\dfrac{12}{7}.\dfrac{13}{25}\)

\(=\dfrac{12}{7}.\dfrac{23}{25}-\dfrac{12}{7}.\dfrac{13}{25}\)

\(=\dfrac{12}{7}.\left(\dfrac{23}{25}-\dfrac{13}{25}\right)\)

\(=\dfrac{12}{7}.\dfrac{2}{5}=\dfrac{24}{35}\)

\(3)\)\(\dfrac{3}{7}.\dfrac{16}{15}-\dfrac{2}{15}.\dfrac{-3}{7}\)

\(=\dfrac{3}{7}.\dfrac{16}{15}-\dfrac{3}{7}.\dfrac{-2}{15}\)

\(=\dfrac{3}{7}.\left(\dfrac{16}{15}+\dfrac{2}{15}\right)\)

\(=\dfrac{3}{7}.\dfrac{18}{15}=\dfrac{18}{35}\)

\(4)\)\(-\dfrac{4}{13}.\dfrac{5}{17}+\dfrac{-12}{13}.\dfrac{4}{17}\)

\(=-\dfrac{4}{13}.\dfrac{5}{17}+\dfrac{-4}{13}.\dfrac{12}{17}\)

\(=-\dfrac{4}{13}.\left(\dfrac{5}{17}+\dfrac{12}{17}\right)\)

\(=-\dfrac{4}{13}.\dfrac{17}{17}=-\dfrac{4}{13}\)

`#040911`

`1)`

`-10/11 * 8/9 + 7/18 . 10/11`

`= 10/11 * (-8/9 + 7/18)`

`= 10/11 * (-1/2)`

`= -5/11`

`2)`

`12/25 * 23/7 - 12/7 *13/25`

`= 12/7 * 23/25 - 12/7 * 13/25`

`= 12/7 * (23/25 - 13/25)`

`= 12/7 * 2/5`

`= 24/35`

`3)`

`3/7 * 16/15 - 2/15 * (-3)/7`

`= 3/7 * (16/15 + 2/15)`

`= 3/7 * 6/5`

`= 18/35`

`4)`

`-4/13 * 5/17 + (-12)/13 * 4/17`

`= -4/17 * 5/13 + (-12)/13 * 4/17`

`= 4/17 * (-5/13 - 12/13)`

`= 4/17 * (-17)/13`

`= -4/13`

19 tháng 7 2017

umk 

Cách làm

1 là ko bít

2 là bí

3 là ế

20 tháng 2 2018

Nhìu vậy

15 tháng 9 2018

a,\(2^{31}=2^{30}.2=\left(2^3\right)^{10}.2=8^{10}.2< 9^{10}.3=\left(3^2\right)^{10}.3=3^{20}.3=3^{21}\)

b,\(2^{99}=\left(2^3\right)^{33}=8^{33}>3^{21}\)

c,\(31^{14}< 32^{14}=\left(2^5\right)^{14}=2^{70}< 2^{72}=\left(2^4\right)^{18}=16^{18}< 17^{18}\)

d,\(63^{10}< 64^{10}=\left(2^6\right)^{10}=2^{60}< 2^{65}=\left(2^5\right)^{13}=32^{13}< 33^{13}\)

3 tháng 8 2017

a,\(5^{28}=25^{14}\) Mà 25<26

\(\Rightarrow5^{28}< 26^{14}\)

Mấy câu sau làm tương tự

3 tháng 8 2017

a) 528 và 2614

\(5^{28}=\left(5^2\right)^{14}=25^{14}\)

Vì \(25^{14}< 26^{14}\)nên \(5^{28}< 26^{14}\)

b) 3111 và 1714

\(31^{11}< 32^{11}=\left(4.8\right)^{11}=4^{11}.8^{11}=2^{22}.8^{11}\)

\(17^{14}>16^{14}=2^{14}.8^{14}=2^{14}.8^3.8^{11}=2^{14}.2^9.8^{11}=2^{23}.8^{11}\)

Ta có : \(2^{23}.8^{11}>2^{22}.8^{11}\), nên \(16^{14}>32^{11}\)

Vậy \(17^{14}>16^{14}>32^{11}>31^{11}\Rightarrow17^{14}>31^{11}\)