\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2017

a) 

 n+(n+1)+(n+2) là 3 số tự nhiên liên tiếp 

3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 và tổng hai số còn lại chia hết cho 3

=> 3 số tự nhiên liên tiếp chia hết cho 3

=> n+(n+1)+(n+2) chia hết cho 3

b)

 n+(n+1)+(n+2)+(n+4) là 4 số tự nhiên liên tiếp 

4 số tự nhiên liên tiếp luôn có 1 số chia hết cho 4 và tổng của 3 số còn lại ko chia hết cho 3

=> 4 số tự nhiên  liên tiếp không chia hết cho 4

=>n+(n+1)+(n+2)+(n+3) không chia hết cho 4

8 tháng 7 2018

Nếu n là một số chẵn thì => n+3 là một số lẻ

Mà chẵn x lẻ = chẵn => đpcm

Nếu n là số lẻ thì => n+3 là một số chẵn

Mà lẻ x chẵn = chẵn => đpcm

Vậy tích n.(n+3) luôn là số chẵn với mọi số tự nhiên với n

8 tháng 7 2018

giả sử n lẻ=> n+3 lẻ=> n(n+3) chẵn, Vn thuộc N

giả sử n chẵn=> n(n+3) chẵn(bởi vì chẵn nhân vs số nào cx chẵn

vậy...

5 tháng 5 2019

a, \(\frac{n+2}{n+3}\)

Gọi \(d=ƯCLN\left(n+2,n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+2⋮d\\n+3⋮d\end{cases}}\)

\(\Rightarrow\left(n+3\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy phân số \(\frac{n+2}{n+3}\)là p/số tối giản

5 tháng 5 2019

b, \(\frac{n+1}{2n+3}\)

Gọi \(d=ƯCLN\left(n+1,2n+3\right)\)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy...

18 tháng 3 2021

a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).

Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )

\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)

\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .

                           Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).

18 tháng 3 2021

b) TƯƠNG TỰ CÂU (a)

29 tháng 4 2017

\(\frac{n+1}{2n+3}\)

Gọi ƯCLN(n + 1, 2n + 3) là a

Ta có:

n + 1\(⋮\)a

\(\Rightarrow\)2(n + 1)\(⋮\)a

\(\Leftrightarrow\)2n + 2\(⋮\)a

2n + 3\(⋮\)a

\(\Rightarrow\)(2n + 3) - (2n + 2)\(⋮\)a

\(\Rightarrow\)1\(⋮\)a

\(\Rightarrow\)a = 1

29 tháng 4 2017

\(\frac{2n+1}{3n+2}\)

Gọi ƯCLN(2n + 1, 3n + 2) là b

Ta có:

2n + 1\(⋮\)b

\(\Rightarrow\)3.(2n + 1)\(⋮\)b

\(\Leftrightarrow\)6n + 3\(⋮\)b (1)

3n + 2\(⋮\)b

\(\Rightarrow\)2.(3n + 2)\(⋮\)b

\(\Leftrightarrow\)6n + 4\(⋮\)b (2)

Từ (1), (2) ta có:

(6n + 4) - (6n + 3)\(⋮\)b

\(\Leftrightarrow\)1\(⋮\)b

\(\Rightarrow\)b = 1

Vậy ƯCLN(2n + 1, 3n + 2) là 1

\(\Rightarrow\)Phân số tối giản

24 tháng 10 2016

a) tổng S bằng

(2014+4).671:2=677 039

b)n.(n+2013) để mọi số tự nhiên n mà tổng trên chia hét cho 2 thì n=2n

→2n.(n+2013)\(⋮̸\)2

C)M=2+22+23+...+220

=(2+22+23+24)+...+(217+218+219+220)

=(2+22+23+24)+...+(216.2+216.22+216+23+216.24)

=30.1+...+216.(2+22+23+24)

=30.1+...+216.30

=30(1+25+29+213+216)\(⋮\)5

 

 

23 tháng 10 2016

c, M= 2 + 22 + 23 +........220

Nhận xét: 2+ 22 + 23 + 24 = 30; 30 chia hết cho 5

Khi đó: M = ( 2+22 + 23 + 24 ) + (25 + 26 + 27 + 28)+.....+ (217+218+219+220)

= ( 2+22 + 23 + 24 ) + 24. ( 2+22 + 23 + 24 ) +...........+216 .( 2+22 + 23 + 24 )

= 30+24 .30 + 28. 30 +.........+ 216.30

= 30.(24 + 28 +.........+216) chia hết cho 5 và 30 chia hết cho 5

Vậy M chia hết cho 5

13 tháng 4 2017

Bài 2:

Ta có: \(a=\frac{2n^2+1}{n^2-1}=\frac{2\left(n^2-1\right)+3}{n^2-1}=2+\frac{3}{n^2-1}\)

Để a nhận giá trị nguyên thì \(\left(n^2-1\right)\inƯ\left(3\right)\)={1;-1;3;-3}

Ta có bảng sau:

n^2-11-13-3
n^2204-2
n/02/

Vì n là số tự nhiên nên n \(\in\){0;2}

Bài 1 : 

Gọi 3 số chẵn liên tiếp là \(2a-2,2a,2a+2\)

Tích 3 số \(\left(2a-2\right)2a\left(2a+2\right)=8.\left(a-1\right)a\left(a+1\right)\)

Vì \(\left(a-1\right)a\left(a+1\right)⋮3\)\(\Leftrightarrow\left(a-1\right)a\left(a+1\right)⋮6\)

nên \(\left(2a-2\right).2a.\left(2a+2\right)\)

Vậy \(\left(2a-2\right).2a.\left(2a+2\right)\)

Bài 2 

a) \(\left(5^n-1\right)⋮4\)

Nếu \(n=1\)thì \(5^n-1=4⋮4\)

Nếu \(n>1\)thì \(5^n\)có hai chữ số tận cùng là \(25\Rightarrow5^n-1\)có hai chữ số tận cùng là \(24\),chia hết cho  \(4\)

Vậy \(\left(5^n-1\right)⋮4\)

b) \(\left(10^n+18n-1\right)⋮27\)

Ta có :\(10^n-1=99.....9\)(n chữ số 9)

\(\Rightarrow10^n+18n^{ }-1=99...9+18n=9.\left(11....1+2n\right)\)(n chữ số 1 )

Ta có \(\left(11....1+2n\right)⋮3\)( Vì \(11...1+2n\)có tổng các chữ số bằng \(3n⋮3\)

\(\Rightarrow\left(10^n+18n-1\right)⋮9.3\)hay \(\left(10^n+18n-1\right)⋮27\)

Chúc bạn học tốt ( -_- )