K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

Giải bài 1 trang 131 SGK Toán 8 Tập 2 | Giải toán lớp 8

* Dựng hình:

   - Dựng tam giác ADC có AD = 2cm, DC = 4cm, CA = 5cm.

   - Dựng tia Ax song song với CD.

   - Đường tròn (C; 3cm) cắt Ax tại B1 và B2.

Hình thang ABCD với B ≡ B1 hoặc B ≡ B2 là hình thang cần dựng.

* Chứng minh

   + Tứ giác ABCD có AD = 2cm, DC = 4cm, CA = 5cm.

   + Ax // CD ⇒ AB // CD ⇒ ABCD là hình thang.

   + B ∈ (C; 3cm) ⇒ BC = 3cm.

29 tháng 6 2017

Hình bình hành

23 tháng 7 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán

Từ B kẻ đường thẳng song song với AC cắt CD tại E. Tứ giác ABEC là hình thang có hai cạnh bên song song nên CE = AB = l cm, BE = AC = 3cm

Tam giác BDE xác định được, ta cần xác định đỉnh C và A.

- Đỉnh C nằm trên tia DE cách D một khoảng bằng 3cm

- Đỉnh A nằm trên đường thẳng đi qua B và song song với CD, A cách C một khoảng bằng 3 cm. (ABCD là hình thang cân nên AC = BD = 3 cm)

Cách dựng:

- Dựng ∆ BDE biết BD = 3cm, BE = 3cm , DE = 4cm

- Dựng điểm C trên tia DE sao cho DC = 3cm

- Dựng đường thẳng d đi qua B song song với CD.

- Dựng cung tròn tâm C bán kính 3 cm cắt đường thắng d tại A. Nối AD ta có hình thang ABCD dựng được.

Chứng minh: Thật vậy theo cách dựng ta có AB // CD.

Tứ giác ABCD là hình thang. CD = 3cm, AC = BD = 3cm. Vậy ABCD là hình thang cân thỏa mãn điều kiện bài toán.

Bài toán có một nghiệm hình.

13 tháng 9 2020

          roi nha

a: Xét ΔFAB và ΔFCD có

góc FAB=góc FCD

góc AFB=góc CFD

=>ΔFAB đồng dạng với ΔFCD

b: ΔFAB đồng dạng với ΔFCD

=>FA/FC=FB/FD

=>FA*FD=FB*FC

 

9 tháng 1 2019

tau méch cô hoài nhá

9 tháng 1 2019

a) Xét tam giác ABD có :

 M là trung điểm của AB

 F là trung điểm của BD

=) MF là đường trung bình của tam giác ABD

=) MF//AD và MF=\(\frac{1}{2}\)AD    (1)

Xét tam giác tam giác ACD có :

 N là trung điểm CD

 E là trung điểm AC

=) NE là đường trung bình của tam giác ACD

=) NE//AD và NE=\(\frac{1}{2}\)AD     (2)

Từ (1) và (2) =) Tứ giác MENF là hình bình hành