K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2023

Xét f(x) là hằng số thì \(f\left(x\right)\equiv0\).

Xét f(x) khác hằng.

Ta có \(a^2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}+2\Rightarrow a^2-2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}\)

\(\Rightarrow\left(a^2-2\right)^2=\dfrac{3}{4}+\dfrac{4}{3}+2=\dfrac{49}{12}\Rightarrow a^4-4a^2-\dfrac{1}{12}=0 \).

Bằng cách đồng nhất hệ số, dễ dàng chứng minh được đa thức \(P\left(x\right)=x^4-4x^2-\dfrac{1}{12}\) bất khả quy trên \(\mathbb{Q}[x]\).

Do đó ta có P(x) là đa thức tối tiểu của a, tức mọi đa thức hệ số hữu tỉ khác nhận a là nghiệm đều chia hết cho P(x).

Vì f(x) là đa thức hệ số nguyên nên \(f\left(x\right)\) chia hết cho \(12P\left(x\right)=12x^4-48x^2-1\).

Vậy \(f\left(x\right)=K\left(x\right)\left(12x^4-48x^2-1\right)\), với \(K\in\mathbb Z[x]\) bất kì.

18 tháng 7 2017

a, Biến đổi ta được E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

b, Ta có E = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) = \(1+\dfrac{4}{\sqrt{x}-3}\) .

. Nếu x không là số chính phương thì \(\sqrt{x}\) là số vô tỉ . Suy ra E là số vô tỉ ( loại )

. Nếu x là số chính phươn thì \(\sqrt{x}\) là số nguyên nên để E có giá trị nguyên thì \(4⋮\left(\sqrt{x}-3\right)\) .

\(\sqrt{x}-3\ge-3\) nên \(\left(\sqrt{x}-3\right)\in\left\{-2;-1;1;2;4\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{1;2;4;5;7\right\}\Rightarrow x\in\left\{1;4;16;25;49\right\}\)

Kết hợp với ĐKXĐ ta được x = 1 ; 16 ; 25 ; 49

25 tháng 10 2017

Bài 1:
x>3

27 tháng 10 2017

bài 1

x <-2 hoăc x >2

17 tháng 7 2018

\(A=\dfrac{4+\sqrt{15}}{4-\sqrt{15}}+\dfrac{4-\sqrt{15}}{4+\sqrt{15}}\)

\(=\dfrac{\left(4+\sqrt{15}\right)^2+\left(4-\sqrt{15}\right)^2}{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\)

\(=\dfrac{\left(16+8\sqrt{15}+15\right)+\left(16-8\sqrt{15}+15\right)}{16-15}\)

\(=\dfrac{62}{1}=62\)

a: \(A=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{3\sqrt{x}-5}{\left(2\sqrt{x}-3\right)}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

b: Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào A, ta được:

\(A=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)

\(=\dfrac{3\sqrt{2}-3-10}{2}:\dfrac{2\sqrt{2}-2+2}{2}\)

\(=\dfrac{3\sqrt{2}-13}{2\sqrt{2}}=\dfrac{6-13\sqrt{2}}{4}\)

a: \(A=\dfrac{x+4\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)

\(=\dfrac{x+4\sqrt{x}-2-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\dfrac{4\sqrt{x}-1+x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x+4\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}\)

b: \(B=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\dfrac{2x+6\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}+\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)

30 tháng 12 2022

1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)

11 tháng 12 2022

\(=\dfrac{4}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{x-4}\)

\(=\dfrac{4}{\sqrt{x}+2}-\dfrac{1}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}\)