Dùng hạt α có động năng 5,00 MeV bắn vào hạt nhân  đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

Đáp án A 

Ta có

 

Vẽ giản đồ véc tơ 

 

gọi b là góc hợp bởi hướng lệch của hạt X so với hướng chuyển động của hạt α ta có

 

V
violet
Giáo viên
11 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)

Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)

=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)

=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)

Áp dụng định luật bảo toàn động lượng

P P P α α p Li

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)

Với  \(P^2 = 2mK, m=A.\).

=> \(\alpha = 90^0.\)

 

8 tháng 4 2016

\(_2^4 He + _{13}^{27}Al \rightarrow _{15}^{30}P + _0^1n\)

Phản ứng thu năng lượng 

\( K_{He} - (K_{P}+K_{n} )= 2,7MeV.(*)\)

Lại có  \(\overrightarrow v_P = \overrightarrow v_n .(1)\)

=> \(v_P = v_n\)

=> \(\frac{K_P}{K_n} = 30 .(2)\)

Áp dụng định luật bảo toàn động lượng trước và sau phản ứng

\(\overrightarrow P_{He} = \overrightarrow P_{P} + \overrightarrow P_{n} \)

Do \(\overrightarrow P_{P} \uparrow \uparrow \overrightarrow P_{n}\) 

=> \(P_{He} = P_{P} + P_{n} \)

=> \(m_{He}.v_{He} = (m_{P}+ m_n)v_P=31m_nv\) (do \(v_P = v_n = v\))

=> \(K_{He} = \frac{31^2}{4}K_n.(3)\)

Thay (2) và (3) vào (*) ta có

 \(K_{He}-31K_n= 2,7.\)

=> \(K_{He} = \frac{2,7}{1-4/31} = 3,1MeV.\)

 

 

 

1 tháng 4 2017

Khe=31^2/4Kn lam sao ra dc nhu the a

28 tháng 7 2018

Đáp án C

Phương pháp:

Áp dụng định luật bảo toàn động lượng và động năng.

Cáchgiải: Đáp án C

Ta có  

 

Vẽ giản đồ Vec tơ 

 

gọi b là góc hợp bởi hướng lệch của hạt X so với hướng chuyển động của hạt α ta có

 

Để b đạt giá trị lớn nhất khi KX = 0,617MeV

17 tháng 12 2017

Đáp án B

Phương pháp: Áp dụng định luật bảo toàn động năng và động lượng

 

Cáchgiải: Đáp án B

Ta có  

 

 

 giản đồ vecto 

 

 

 

gọi b là góc hợp bởi hướng lệch của hạt X so với hướng chuyển động của hạt α ta có

 

6 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow _2^4He+ _3^6 Li\)

Áp dụng định luật bảo toàn động lượng

PPαPLip

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{Li}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{Li}K_{Li} = 2m_{He}K_{He}+ 2m_pK_p\)

=> \(K_{Li} = \frac{4K_{He}+K_p}{6}=3,58MeV\)

=> \(v = \sqrt{\frac{2.K_{Li}}{m_{Li}}} = \sqrt{\frac{2.3,58.10^6.1,6.10^{-19}}{6.1,66055.10^{-27}}} = 10,7.10^6 m/s.\)

 

 

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)

\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.

\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)

=> \(K_p +K_O = 6,48905MeV. (1)\)

Áp dụng định luật bảo toàn động lượng

P P α P p O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{O}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)

Từ (1) và (2) giải hệ phương trình ta được

\(K_p = 4,414MeV; K_O = 2,075 MeV.\)

 

 

 

13 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)

Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p=\overrightarrow P_{He}+ \overrightarrow P_{X} \) (do hạt Be đứng yên)

PPPHeXp

Dựa vào hình vẽ ta có \(P_{p}^2+ P_{He}^2 = P_X^2\)

=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)

=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 6MeV.\)

15 tháng 3 2019

Đáp án B 

Ta có 

 

Vẽ giản đồ véc tơ 

 

gọi b là góc hợp bởi hướng lệch của hạt X so với hướng chuyển động của hạt α ta có

 

6 tháng 4 2016

\(_1^1p + _3^7 Li \rightarrow _2^4He+_2^4He\)

\(W_{tỏa} = (m_t-m_s)c^2 =( m_{Li}+m_p - 2m_{He}).931=17,4097MeV.\)

Số hạt nhân \(_2^4He\) trong 1,5 g heli là \(N= nN_A= \frac{m}{A}.N_A = \frac{1,5}{4}.6,02.10^{23}= 2,2575.10^{23} \)(hạt)

      Mỗi phản ứng tạo ra 2 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 17,4097 MeV

=> Để tạo ra 2,2572.1023 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 

                         \(W = \frac{17,4097.2,2575.10^{23}}{2} = 1,965.10^{24}MeV.\)