K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016

a) \(=y^4-81-y^4+4=-77\)

b) \(=a^2+b^2+c^2+2ab-2ac-2bc-a^2+2ac-b^2-2ab+2ac=c^2\)

c) Nhân 2 vào biểu thức

20 tháng 11 2021

\(a,=\dfrac{1}{2}\left[\left(x^2+y^2\right)^2-4x^2y^2\right]\\ =\dfrac{1}{2}\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\dfrac{1}{2}\left(x-y\right)^2\left(x+y\right)^2\\ b,=\left(3x-\dfrac{1}{2}y\right)\left(9x^2+\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\\ c,=\dfrac{1}{2}\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)=\dfrac{1}{2}\left(x+\dfrac{1}{4}\right)^2\)

24 tháng 2 2019

cậu cần nữa k????

a: \(A=4\cdot\dfrac{5}{2}\sqrt{x}-\dfrac{8}{3}\cdot\dfrac{3}{2}\sqrt{x}-\dfrac{4}{3x}\cdot\dfrac{3x}{8}\cdot\sqrt{x}\)

\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)

\(=\dfrac{11}{2}\sqrt{x}\)

b: \(B=\dfrac{y}{2}+\dfrac{3}{4}\cdot\left|2y-1\right|-\dfrac{3}{2}\)

\(=\dfrac{y}{2}+\dfrac{3}{4}\left(1-2y\right)-\dfrac{3}{2}\)

=1/2y+3/4-3/2y-3/2

=-y-3/4

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có: \({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\) Bài 2: Chứng minh rằng với mọi số thực x,y ta có: \(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\) Bài 3: Cho x,y,z thuộc R. Chứng minh rằng: \(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\) Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\) Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq...
Đọc tiếp

Bài 1: Chứng minh rằng với mọi số thực khác không x, y ta có:

\({x^2\over y^2} + {y^2\over x^2} + 4 ≥ 3({x\over y} + {y\over x})\)

Bài 2: Chứng minh rằng với mọi số thực x,y ta có:

\(xy(x-2)(y+6)+12x^2-24x+3y^2+18y+36>0\)

Bài 3: Cho x,y,z thuộc R. Chứng minh rằng:

\(1019x^2+18y^4+1007z^2\geq 30xy^2+6y^2z+2008zx\)

Bài 4: Cho a,b>=4. Chứng minh rằng: \(a^2+b^2+ab>=6(a+b)\)

Bài 5:Cho x,y>=1. Chứng minh rằng: \(x\sqrt {y-1}+y \sqrt {x-1} \leq xy\)

Bài 6: Cho x,y>=1. Chứng minh rằng: \({1\over 1+x^2}+{1\over 1+y^2}\geq {2\over 1+xy}\)

Bài 7: Chứng minh rằng với mọi số thực a,b ta có:

\(2(a^4+b^4)\geq ab^3+a^3b+2a^2b^2\)

Bài 8: Cho hai số thực x,y khác không. Chứng minh rằng:

\({4x^2y^2\over (x^2+y^2)^2}+{x^2\over y^2}+{y^2\over x^2}\geq 3\)

Bài 9: Cho các số thực a,b cùng dấu. Chứng minh bất đẳng thức:

\(({(a^2+b^2)\over 2})^3\leq({(a^3+b^3)\over 2})^2\)

Bài 10: Cho các số thực dương a,b. Chứng minh các bất đẳng thức sau:

\({a^2b\over(2a^3+b^3)}+{2\over 3} \leq {(a^2+2ab)\over (2a^2+b^2)}\)

Bài 11: Cho các số thực a,b không đồng thời bằng 0. Chứng minh:

\({2ab\over (a^2+4b^2)}+{b^2\over (3a^2+2b^2)}\leq {3\over 5}\)

@Akai Haruma

12
12 tháng 6 2018

Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy

⇒ x2 + y2 ≥ 2xy

\(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2

\(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2

⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)

CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\)\(6\) ( 2)

Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))

Đẳng thức xảy ra khi : x = y

12 tháng 6 2018

Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )

Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )

Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )

Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)

Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)

Đẳng thức xảy ra khi a = b = 4

19 tháng 1 2022

a) \(M=\sqrt{4\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{16\left(x-1\right)}\)

\(=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}=-5\sqrt{x-1}\)

b) \(N=\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)

\(=5\sqrt{y+4}+6\sqrt{y+4}-18\sqrt{y+4}=-7\sqrt{y+4}\)

c) \(P=\sqrt{y-2}-3\sqrt{64\left(y-2\right)}+4\sqrt{49\left(y-2\right)}\)

\(=\sqrt{y-2}-24\sqrt{y-2}+28\sqrt{y-2}=5\sqrt{y-2}\)

a) \(M=\sqrt{4\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{16\left(x-1\right)}.\)

\(M=\sqrt{4\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{16\left(x-1\right)}\)

\(=2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}\)

\(=-5\sqrt{x-1}\)

b) \(N=\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)

\(N=\sqrt{25\left(y+4\right)}+\sqrt{36\left(y+4\right)}-2\sqrt{81\left(y+4\right)}\)

\(=5\sqrt{y+4}+6\sqrt{y+4}\)

\(=-7\sqrt{y+4}\)

c) \(P=\sqrt{\left(y-2\right)}-3\sqrt{64\left(y-2\right)}+4\sqrt{49\left(y-2\right)}\)

\(P=\sqrt{\left(y-2\right)}-3\sqrt{64\left(y-2\right)}+4\sqrt{49\left(y-2\right)}\)

\(=\sqrt{y-2}-24\sqrt{y-2}+28\sqrt{y-2}\)

\(=5\sqrt{y-2}\)

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

14 tháng 1 2019

a) \(\left\{{}\begin{matrix}3x-4y=-2\\2x+y=6\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-4y=-2\\8x+4y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=22\\3x-4y=-2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

31 tháng 12 2022

a: =>3x-4y=-2 và 8x+4y=24

=>11x=22 và 2x+y=6

=>x=2 và y=6-2x=6-2*2=2

b: 2x-y=0 và 3x+y=4

=>5x=4 và y=2x

=>x=4/5 và y=8/5

c: x+3y=-2 và x-y=-1

=>4y=-1 và x=y-1

=>y=-1/4 và x=-1/4-1=-5/4

d: x+y=3 và 4x-3y=-2

=>4x+4y=12 và 4x-3y=-2

=>7y=14 và x+y=3

=>y=2 và x=1