\(\left(-3xy^4+\dfrac{1}{2}x^2y^2\right)^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=-\left[\left(\dfrac{1}{3}ab^2+2a^3b\right)^3\right]\)

\(=\dfrac{-1}{27}a^3b^6-3\cdot\dfrac{1}{9}a^2b^4\cdot2a^3b-3\cdot\dfrac{1}{3}ab^2\cdot4a^6b^2-8a^9b^3\)

\(=\dfrac{-1}{27}a^3b^6-\dfrac{2}{3}a^5b^5-4a^7b^4-8a^9b^3\)

b: \(=x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-1\right)\)

\(=6x^2+2-6x^2+6\)

=8

31 tháng 7 2021

oe

 

29 tháng 6 2017

\(=3x^2\left(x^2-1\right)+\left(x^8-3x^4+3x^2-1\right)-\left(x^8-1\right)\)

\(=3x^4-3x^2+x^8-3x^4+3x^2+1-x^8+1\)

\(=2\)

=2 nha ban

(con cach lam ban nhan dang thuc len rui rut gon lai)

2 tháng 9 2019

\(a,\left(-4xy-5\right)\left(5-4xy\right)=\left(4xy+5\right)\left(4xy-5\right).\)

\(=\left(4xy\right)^2-5^2=16x^2y^2-25\)

\(b,\left(a^2b+ab^2\right)\left(ab^2-a^2b\right)=\left(ab^2+a^2b\right)\left(ab^2-a^2b\right)\)

\(=\left(ab^2\right)^2-\left(a^2b\right)^2=a^2b^4-a^4b^2\)

\(c,\left(3x-4\right)^2+2\left(3x-4\right)\left(4-x\right)+\left(4-x\right)^2\)

\(=\left[\left(3x-4\right)+\left(4-x\right)\right]^2\)

\(=\left(3x-4+4-x\right)^2=\left(2x\right)^2=4x^2\)

\(d,\left(a^2+ab+b^2\right)\left(a^2-ab+b^2\right)-\left(a^4+b^4\right)\)

\(=\left[\left(a^2+b^2\right)+ab\right]\left[\left(a^2+b^2\right)-ab\right]-\left(a^4+b^4\right)\)

\(=\left(a^2+b^2\right)^2-\left(ab\right)^2-a^4-b^4\)

\(=a^4+2a^2b^2+b^4-a^2b^2-a^4-b^4=a^2b^2\)

28 tháng 6 2017

Phép nhân các phân thức đại số

21 tháng 6 2017

a) = (x+1-x+1)(x2+2x+1+x2-1+x2-2x+1)- 6(x2-1)

   = 2( 3x2+1)- 6(x2-1)

   = 2( 3x2+1-3x2+3)

   =2. 4

   =8

1 tháng 7 2018

1) \(\left(3x-2\right)^2=9x^2-12x+4\)

\(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2=\dfrac{1}{4}x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\)

\(\left(a+b\sqrt{3}\right)^2=a^2+2\sqrt{3}ab+3b^2\)

2) \(4a^2+4a+1=\left(2a+1\right)^2\)

\(9x^2-6x+1=\left(3x-1\right)^2\)

\(\dfrac{1}{4}x^2-\dfrac{1}{3}xy+\dfrac{1}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{1}{3}y\right)^2\)

23 tháng 6 2017

a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x+1\right)\cdot\left[x\cdot\left(x-1\right)-\left(x^2-x+1\right)\right]\)

\(=\left(x+1\right)\left(x^2-x-x^2+x-1\right)\)

\(=\left(x+1\right)\cdot\left(-1\right)\)

\(=-1\left(x+1\right)\)

b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+\left(3x+12\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3x^2-3x+12x-12\)

\(=x^3-1-x^3-8+12x-12\)

\(=-21+12x\)

c) \(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=3x^2\left(x^2-1\right)+x^6-3x^4+3x^2-1-\left(x^6-1\right)\)

\(=3x^4-3x^2+x^6-3x^4+3x^2-1-x^6+1\)

\(=0\)

24 tháng 6 2017

câu b bạn làm sai rồi í!