Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hàm số y = sinx nhận giá trị bằng 1
- Vẽ hàm số y = sinx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)
- Vẽ hàm số y = 1
- Lấy giao điểm của hai hàm số y = sinx và y = 1 là A, B,...
b) Hàm số y = sinx nhận giá trị bằng 0
- Vẽ hàm số y = sinx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)
- Vẽ hàm số y = 0
- Lấy giao điểm của hai hàm số y = sinx và y = 0 là A, B, C, D, E,...
c) Hàm số y = cosx nhận giá trị bằng – 1
- Vẽ hàm số y = cosx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)
- Vẽ hàm số y = - 1
- Lấy giao điểm của hai hàm số y = cosx và y = - 1 là A, B,...
d) Hàm số y = cosx nhận giá trị bằng 0
- Vẽ hàm số y = cosx trên đoạn \(\left[ { - 2\pi ;2\pi } \right]\)
- Vẽ hàm số y = 0
- Lấy giao điểm của hai hàm số y = cosx và y = 0 là C, D, E, F,...
Đồ thị hàm số y = sin x trên đoạn [-2π, 2π]
Dựa vào đồ thị hàm số y = sinx
a) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị bằng -1 là:
x=−π2;x=3π2x=−π2;x=3π2
b) Những giá trị của x ∈ [−3π2,2π][−3π2,2π] để hàm số y = sin x nhận giá trị âm là:
x ∈ (-π, 0) ∪ (π, 2 π)
Chọn B
y ' = 1 2 tan x + cot x . ( tan x + cot x ) ' = 1 2 tan x + cot x . 1 cos 2 x − 1 sin 2 x ⇒ y ' π 4 = 1 2 1 + 1 . 1 1 2 − 1 1 2 = 0
Xét đồ thị hàm số y = sin x trên :
a. sin x = -1 ⇔
(Hoành độ giao điểm của đồ thị hàm số và đường thẳng y = -1).
b. sin x < 0
⇔ x ∈ (-π; 0) ∪ (π; 2π)
(Các khoảng mà đồ thị nằm phía dưới trục hoành).
Hàm số nhận giá trị âm ứng với phần đồ thị nằm dưới trục hoành. Từ đồ thị ta suy ra trên đoạn \(\left[ { - \pi ;\frac{{3\pi }}{2}} \right]\), thì \(y < 0\) khi \(x\; \in \left( { - \frac{\pi }{2};0} \right) \cup \left( {\frac{\pi }{2};\;\pi } \right)\)
Bài 1. a) trục hoành cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ - π ; 0 ; π. Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 0, đó là x = - π; x = 0 ; x = π.
b) Đường thẳng y = 1 cắt đoạn đồ thị y = tanx (ứng với x ∈ ) tại ba điểm có hoành độ . Do đó trên đoạn chỉ có ba giá trị của x để hàm số y = tanx nhận giá trị bằng 1, đó là .
c) Phần phía trên trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ truộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị dương là x ∈ .
d) Phần phía dưới trục hoành của đoạn đồ thị y = tanx (ứng với x ∈ ) gồm các điểm của đồ thị có hoành độ thuộc một trong các khoảng . Vậy trên đoạn , các giá trị của x để hàm số y = tanx nhận giá trị âm là x ∈ .
a) \(\left\{-\pi;0;\pi\right\}\)
b) \(\left\{\dfrac{\pi}{4};\dfrac{\pi}{4}\pm\pi\right\}\)
c) \(\left(-\pi;-\dfrac{\pi}{2}\right)\cup\left(0;\dfrac{\pi}{2}\right)\cup\left(\pi;\dfrac{3\pi}{2}\right)\)
d) \(\left(-\dfrac{\pi}{2};0\right)\cup\left(\dfrac{\pi}{2};\pi\right)\)
chọn C
y = tan x + cot x ⇒ y 2 = tan x + cot x ⇒ y ' .2 y = 1 cos 2 x − 1 sin 2 x
⇒ y ' = 1 2 tan x + cot x 1 cos 2 x − 1 sin 2 x
f ' π 4 = 1 2 tan π 4 + cot π 4 1 cos 2 π 4 − 1 sin 2 π 4 = 1 2 2 2 − 2 = 0
a) Hàm số y = tanx nhận giá trị bằng – 1
- Vẽ hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)
- Vẽ hàm số y = - 1
- Lấy giao điểm của hai hàm số y = tanx và y = - 1
b) Hàm số y = tanx nhận giá trị bằng 0
- Vẽ hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)
- Vẽ hàm số y = 0
- Lấy giao điểm của hai hàm số y = tanx và y = 0
c) Hàm số y = cotx nhận giá trị bằng 1
- Vẽ hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)
- Vẽ hàm số y = 1
- Lấy giao điểm của hai hàm số y = cotx và y = 1
d) Hàm số y = cotx nhận giá trị bằng 0
- Vẽ hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)
- Vẽ hàm số y = 0
- Lấy giao điểm của hai hàm số y = tanx và y = 0