K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

a) -5x2 + 3x + 2 = 0 (a = -5; b = 3; c = 2)

\(\Delta=3^2-4\cdot\left(-5\right)+2=31\)

=> Phương trình có nghiệm

Ta có a + b + c = -5 +3 +2 = 0

Nên phương trình có 2 nghiệm:

x1= 1; x2 = \(\dfrac{c}{a}\) = \(\dfrac{2}{-5}\) = \(\dfrac{-2}{5}\)

b) 7x2 + 6x - 13 = 0 (a = 7; b = 6; c = -13)

\(\Delta=6^2-4\cdot7\cdot\left(-13\right)=400\)

Nên phương trình có nghiệm

Ta có a + b + c = 7 + 6 +(-13) = 0

Nên phương trình có 2 nghiệm:

x1= 1; x2 = \(\dfrac{c}{a}=\dfrac{-13}{7}\)

c) x2 - 7x + 12 = 0 (a = 1; b = -7; c = 12)

\(\Delta\) = (-7)2 - 4 * 1 * 12= 1

Nên phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{1}}{2\cdot1}=4\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{1}}{2\cdot1}=3\)

Vậy phương trình có 2 nghiệm x1=4 và x2=3

d)-0,4x2 +0,3x +0,7 =0 (a = -0,4; b= 0,3; c= 0,7)

\(\Delta=\left(0,3\right)^2-4\cdot\left(-0,4\right)\cdot0,3=0,57\)

Nên phương trình có nghiệm

Ta có a - b + c = (-0,4) - 0,3 + 0,7 = 0

Nên phương trình có 2 nghiệm x1 = -1; \(x_2=\dfrac{-c}{a}=\dfrac{-0,7}{-0,4}=\dfrac{7}{4}\)

e)3x2+(3-2m)x-2m =0(a= 3;b=3-2m;c= -2m)

\(\Delta=\left(3-2m\right)^2-4\cdot3\cdot\left(-2m\right)\)

= 9 - 12m + 4m +24m = 9 + 16m

Do \(\left\{{}\begin{matrix}9>0\\16m\ge0\end{matrix}\right.\)nên phương trình có nghiệm

Ta có a - b + c = 3- (3-2m) +( -2m)

= 3 -3 + 2m - 2m = 0

Nên phương trình có 2 nghiệm

x1= - 1; x2=\(\dfrac{-c}{a}=\dfrac{-\left(-2m\right)}{3}=\dfrac{2m}{3}\)

f) 3x2 - \(\sqrt{3}\)x - ( 3+\(\sqrt{3}\))=0

(a= 3; b= \(-\sqrt{3}\); c=\(-\left(3+\sqrt{3}\right)\))

\(\Delta=\left(-\sqrt{3}\right)^2-4\cdot3\cdot\left(-\left(3+\sqrt{3}\right)\right)\)

= 39+12\(\sqrt{3}\)

Nên phương trình có nghiệm

Ta có a - b +c = 3 - (\(-\sqrt{3}\)) + (-(3+\(\sqrt{3}\))) = 0

Phương trình có 2 nghiệm x1= -1;

x2=\(\dfrac{-c}{a}=\dfrac{-\left(-\left(3+\sqrt{3}\right)\right)}{3}=\dfrac{3+\sqrt{3}}{3}\)

a: Vì 7-9+2=0 nên pt có hai nghiệm là \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{2}{7}\end{matrix}\right.\)

b: Vì 23-(-9)-32=0 nên pt có hai nghiệm là: \(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{32}{23}\end{matrix}\right.\)

c: Vì \(1975+4-1979=0\)

nên pt có hai nghiệm là \(\left\{{}\begin{matrix}x_1=1\\x_2=-\dfrac{1979}{1975}\end{matrix}\right.\)

d: Vì \(5+\sqrt{2}+5-\sqrt{2}-10=0\)

nên pt có hai nghiệm là: \(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{-10}{5+\sqrt{2}}\end{matrix}\right.\)

e: Vì \(\dfrac{1}{3}-\left(-\dfrac{3}{2}\right)-\dfrac{11}{6}=0\)

nên pt có hai nghiệm là: 

\(\left\{{}\begin{matrix}x_1=-1\\x_2=\dfrac{11}{6}:\dfrac{1}{3}=\dfrac{11}{6}\cdot3=\dfrac{11}{2}\end{matrix}\right.\)

f: Vì 31,1-50,9+19,8=0 nên phương trình có hai nghiệm là:

\(\left\{{}\begin{matrix}x_1=1\\x_2=\dfrac{198}{311}\end{matrix}\right.\)

30 tháng 3 2019

a, Ta có:
2x2-5x+2=0
<=> 2x2-4x-x+2=0
<=> 2x(x-2)-(x-2)=0
<=> (x-2)(2x-1)=0
\(< =>\left[{}\begin{matrix}x-2=0\\2x-1=0\end{matrix}\right.\) \(< =>\left[{}\begin{matrix}x=2\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(S=\left\{2;\frac{1}{2}\right\}\)
b. \(\frac{1}{2}x^2-2\sqrt{2}x-4=0\)
<=> \(x^2-4\sqrt{2}x-8=0\)
Xét : \(\Delta'=\left(-2\sqrt{2}\right)^2-1.\left(-8\right)\)
=8+8
=16
\(\Delta'>0\) nên phương trình có 2 nghiệm phân biệt là:
\(\left[{}\begin{matrix}x=2\sqrt{2}+\sqrt{16}\\x=2\sqrt{2}-\sqrt{16}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=2\sqrt{2}+4\\x=2\sqrt{2}-4\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là: \(S=\left\{2\sqrt{2}+4;2\sqrt{2}-4\right\}\)

NV
14 tháng 5 2020

c/

\(x\left(x+3\right)\left(x+1\right)\left(x+2\right)-24=0\)

\(\Leftrightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt \(x^2+3x=t\)

\(t\left(t+2\right)-24=0\Leftrightarrow t^2+2t-24=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2+3x=4\\x^2+3x=-6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+3x-4=0\\x^2+3x+6=0\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x-10=0\)

\(\Leftrightarrow\left(x^2-x\right)^2+3\left(x^2-x\right)-10=0\)

Đặt \(x^2-x=t\)

\(t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x=2\\x^2-x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\end{matrix}\right.\)

NV
13 tháng 5 2020

a/ ĐKXĐ: ...

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

\(2\left(t^2-2\right)-3t+2=0\)

\(\Leftrightarrow2t^2-3t-2=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=2\\x+\frac{1}{x}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-2x=1=0\\2x^2-x+2=0\end{matrix}\right.\)

b/ Với \(x=0\) ko phải nghiệm

Với \(x\ne0\) chia 2 vế của pt cho \(x^2\)

\(x^2+\frac{1}{x^2}-5x+\frac{5}{x}-8=0\)

\(\Leftrightarrow x^2+\frac{1}{x^2}-2-5\left(x-\frac{1}{x}\right)-6=0\)

Đặt \(x-\frac{1}{x}=t\Rightarrow t^2=x^2+\frac{1}{x^2}-2\)

\(t^2-5t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{x}=-1\\x-\frac{1}{x}=6\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x-1=0\\x^2-6x-1=0\end{matrix}\right.\)