Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách dựng:
+ Dựng đoạn thẳng BC = 6cm.
+ Dựng cung chứa góc 80º trên đoạn thẳng BC (tương tự bài 46) :
Dựng tia Bx sao cho
Dựng tia By ⊥ Bx.
Dựng đường trung trực của BC cắt By tại O.
Dựng đường tròn (O; OB).
Cung lớn BC chính là cung chứa góc 800 dựng trên đoạn BC.
+ Dựng đường thẳng d song song với BC và cách BC một đoạn 2cm:
Lấy D là trung điểm BC.
Trên đường trung trực của BC lấy D’ sao cho DD’ = 2cm.
Dựng đường thẳng d đi qua D’ và vuông góc với DD’.
+ Đường thẳng d cắt cung lớn BC tại A.
Ta được ΔABC cần dựng.
Chứng minh:
+ Theo cách dựng có BC = 6cm.
+ A ∈ cung chứa góc 80o dựng trên đoạn BC
+ A ∈ d song song với BC và cách BC 2cm
⇒ AH = DD’ = 2cm.
Vậy ΔABC thỏa mãn yêu cầu đề bài.
Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.
Trình tự dựng gồm các bước sau:
- Dựng đoạn thẳng BC = 6cm
- Dựng cung chứa góc 80 trên đoạn thẳng BC (cung BmC).
- Trên đường vuông góc với BC tại I(I là trung điểm BC), chọn điểm K sao cho IK = 2cm. Từ K dựng đường thẳng vuông góc với IK. Đường thẳng này cắt cung chứa góc BmC tại A và A'.
ΔABC (hoặc ΔA'BC) là tam giác thỏa mãn yêu cầu đề bài.
C A B H 2 8
Áp dụng hệ thức liên quan tới đường cao ta có :
\(AH^2=BH.CH=2.8=16\)
\(\Rightarrow AH=4cm\)
Áp dụng công thức \(AH^2=BH.CH\) (hệ thức về cạnh trong tam giác vuông)
Được : \(AH^2=8.2=16\Rightarrow AH=4\) (cm)
Nếu BC2 = AC2 + AB2 thì tam giác ABC vuông tại A. (Pytago)
ta có: 7,52 = 4,52 + 62 => tam giác ABC vuông tại A.
Tam giác ABC vuông tại A, đường cao AH nên: AH.BC = AC.AB <=> AH = (AC.AB)/BC <=> AH = 3,6 cm
Ta có: AB2 = BC.BH <=> BH = AB2 /BC <=> 36/7,5 = 4,8 cm
=> HC = BC - BH = 7.5 - 4.8 = 2.7 cm
a ) Ta có : AB2 + CA2 = 272 + 362 = 2025
BC2 = 452 = 2025
=> AB2 + AC2 = BC2
Theo đ/l Py-ta-go đảo => Tam giác ABC vuông
=> BC là cạnh huyền
=> AB , AC là hai cạnh góc vuông
=> Tam giác ABC vuông tại A
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
A B C H
a ) Ta có : \(20^2=12^2+16^2\Leftrightarrow BC^2=AB^2+AC^2\)
Theo định lý Pytago đảo thì tam giác ABC là tam giác vuông
b )
Áp dụng hệ thức lượng vào tam giác vuông ABC ta có :
\(AB.AC=AH.BC\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{12.16}{20}=9,6\left(cm\right)\)
c ) Ta có :
\(AB.cosB+AC.cosC=\frac{AB.AB}{BC}+\frac{AC.AC}{BC}\)
\(=\frac{AC^2+AB^2}{BC}=\frac{BC^2}{BC}=BC=20\left(cm\right)\)
Chúc bạn học tốt !!!
A B C M 2cm 2cm 2cm
a) Vì AM là trung tuyến của \(\Delta ABC\)tại A \(\Rightarrow MB=MC\)
Vì \(\Delta ABM\)là tam giác đều có cạnh là 2cm\(\Rightarrow AB=AM=BM=2cm\)
Do đó độ dài cạnh BC là : \(2+2=4cm\)
Áp dụng định lý Py-ta-go trong tam giác vuông ABC ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2\)
\(\Leftrightarrow AC^2=4^2-2^2=16-4=12\)
\(\Rightarrow AC=\sqrt{12}\left(cm\right)\)
b) Diện tích \(\Delta ABC\)là : \(\frac{1}{2}\left(AB.AC\right)=\frac{2.\sqrt{12}}{2}=\sqrt{12}\left(cm^2\right)\)
Cách dựng:
+ Dựng đoạn thẳng BC = 6cm.
+ Dựng cung chứa góc 80 º trên đoạn thẳng BC (tương tự bài 46) :
Dựng tia Bx sao cho
Dựng tia By ⊥ Bx.
Dựng đường trung trực của BC cắt By tại O.
Dựng đường tròn (O; OB).
Cung lớn BC chính là cung chứa góc 80 º dựng trên đoạn BC.
+ Dựng đường thẳng d song song với BC và cách BC một đoạn 2cm:
Lấy D là trung điểm BC.
Trên đường trung trực của BC lấy D’ sao cho DD’ = 2cm.
Dựng đường thẳng d đi qua D’ và vuông góc với DD’.
+ Đường thẳng d cắt cung lớn BC tại A.
Ta được ΔABC cần dựng.
Chứng minh:
+ Theo cách dựng có BC = 6cm.
+ A ∈ cung chứa góc 80 º dựng trên đoạn BC
+ A ∈ d song song với BC và cách BC 2cm
⇒ AH = DD’ = 2cm.
Vậy ΔABC thỏa mãn yêu cầu đề bài.
Biện luận: Do d cắt cung lớn BC tại hai điểm nên bài toán có hai nghiệm hình.