Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Phương án thí nghiệm:
- Lắp các dụng cụ thành bộ như hình trên.
(1) Nam châm điện (2) Viên bi thép
(3) Cổng quang điện (4) Công tắc điều khiển
(5) Đồng hồ đo thời gian (6) Giá
- Tiến hành:
+ Đặt bi thép dính vào phía dưới nam châm
+ Nhấn công tắc cho bi thép rơi
+ Đọc số chỉ thời gian rơi trên đồng hồ
+ Lặp lại thao tác với khoảng cách từ vị trí vật bắt đầu rơi đến cổng quang điện khác nhau.
* Đánh giá nguyên nhân sơ bộ ảnh hưởng đến kết quả trong thí nghiệm:
- Do tay nhấn công tắc thả viên bi thép giữa các lần đo không đều nhau
- Do yếu tố môi trường
n |
t |
∆ti |
∆t’ |
1 |
0,398 |
0,006 |
|
2 |
0,399 |
0,005 |
|
3 |
0,408 |
0,004 |
|
4 |
0,410 |
0,006 |
|
5 |
0,406 |
0,002 |
|
6 |
0,405 |
0,001 |
|
7 |
0,402 |
0,002 |
|
Trung bình |
0,404 |
0,004 |
0,001 |
1. Tính giá trị trung bình và sai số tuyệt đối của phép đo gia tốc rơi tự do
- Lần 1: \({g_1} = \frac{{2{s_1}}}{{t_1^2}} = \frac{{2.0,4}}{{0,{{285}^2}}} = 9,849(m/{s^2})\)
- Lần 2: \({g_2} = \frac{{2{s_2}}}{{t_2^2}} = \frac{{2.0,4}}{{0,{{285}^2}}} = 9,849(m/{s^2})\)
- Lần 3: \({g_3} = \frac{{2{s_3}}}{{t_3^2}} = \frac{{2.0,4}}{{0,{{285}^2}}} = 9,919(m/{s^2})\)
- Lần 4: \({g_4} = \frac{{2{s_4}}}{{t_4^2}} = \frac{{2.0,4}}{{0,{{285}^2}}} = 9,849(m/{s^2})\)
- Lần 5: \({g_5} = \frac{{2{s_5}}}{{t_5^2}} = \frac{{2.0,4}}{{0,{{286}^2}}} = 9,780(m/{s^2})\)
Gia tốc trung bình là: \(\overline g = \frac{{9,849 + 9,849 + 9,919 + 9,849 + 9,780}}{5} = 9,849(m/{s^2})\)
Sai số tuyệt đối của gia tốc trong các lần đo
\(\begin{array}{l}\Delta {g_1} = \left| {\overline g - {g_1}} \right| = \left| {9,849 - 9,849} \right| = 0\\\Delta {g_2} = \left| {\overline g - {g_2}} \right| = \left| {9,849 - 9,849} \right| = 0\\\Delta {g_3} = \left| {\overline g - {g_3}} \right| = \left| {9,849 - 9,919} \right| = 0,07\\\Delta {g_4} = \left| {\overline g - {g_4}} \right| = \left| {9,849 - 9,849} \right| = 0\\\Delta {g_5} = \left| {\overline g - {g_5}} \right| = \left| {9,849 - 9,780} \right| = 0,069\end{array}\)
Sai số tuyệt đối trung bình là: \(\overline {\Delta g} = \frac{{\Delta {g_1} + \Delta {g_2} + \Delta {g_3} + \Delta {g_4} + \Delta {g_5}}}{5} = 0,028\)
Suy ra kết quả: \(g = 9,849 \pm 0,028\)
2. Trong thí nghiệm người ta dùng trụ thép làm vật rơi nhằm mục đích khi ta thả vật rơi thì xác suất phương rơi của vật chắn tia hồng ngoại ở cổng quang điện cao, giúp ta thực hiện thí nghiệm dễ dàng hơn
- Có thể dùng vật thả rơi là viên bi thép, nhưng xác suất khi thả rơi viên bi có phương rơi không chắn được tia hồng ngoại cao hơn khi dùng trụ thép, nên khi làm thí nghiệm với viên bi ta cần căn chỉnh và thả theo đúng phương của dây rọi.
Thời gian trung bình của phép đo là:
\(\overline t = \frac{{{t_1} + {t_2} + {t_3}}}{3} = \frac{{0,101 + 0,098 + 0,102}}{3} \approx 0,100(s)\)
Sai số tuyệt đối trung bình của phép đo là:
\(\begin{array}{l}\Delta {t_1} = \left| {{t_2} - {t_1}} \right| = \left| {0,098 - 0,101} \right| = 0,003\\\Delta {t_2} = \left| {{t_3} - {t_2}} \right| = \left| {0,102 - 0,098} \right| = 0,004\\\overline {\Delta t} = \frac{{\Delta {t_1} + \Delta {t_2}}}{2} = \frac{{0,003 + 0,004}}{2} \approx 0,004(s)\end{array}\)
1.
Xác định gia tốc rơi tự do của trụ thép theo công thức:
\(g=a=\dfrac{2s}{t^2}\left(m/s^2\right)\)
2.
Để xác định gia tốc rơi tự do của trụ thép cần đo đại lượng: quãng đường rơi của trụ thép và thời gian rơi.
3.
Để trụ thép rơi qua cổng quang điện cần chú ý điều chỉnh máng thẳng đứng (quan sát dây rọi) đồng thời điều chỉnh cổng quang điện để trụ thép rơi qua cổng quang điện.
4.
Cần đặt đồng hồ đo thời gian hiện số ở chế độ \(A\leftrightarrow B\) để đo được đại lượng cần đo.
Áp dụng công thức tính sai số tỉ đối
δv = = + = + = 0,014
δg = = + = +2. = 0,026
= = 2. = 3,95 m/s
∆v = .δv = 3,95 . 0,014 = 0,06 m/s
v = ± ∆v = 3,95 ± 0,06 m/s
mà = = = 9,78 m/s2.
∆g = .δg = 9,78.0,026 = 0,26 m/s2.
g = ± ∆g = 9,78 ± 0,26 m/s2
Tham khảo kết quả dưới đây: