Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2x^2+y^2+2xy-8x-6y+30$
$=(x^2+y^2+2xy)+x^2-8x-6y+30$
$=(x+y)^2-6(x+y)+(x^2-2x)+30$
$=(x+y)^2-6(x+y)+9+(x^2-2x+1)+20$
$=(x+y-3)^2+(x-1)^2+20\geq 20$
Vậy GTNN của biểu thức là $20$ khi $x+y-3=x-1=0$
$\Leftrightarrow x=1; y=2$
Ok :))
(a+b)6 = a6 + 6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6= a^6+b^6+6(a^5b+ab^5)+15(a^4b^2+a^2b^4)+20a^3b^3
(a-b)5=a^5-5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5
RỒI TỰ CUYỂN NHA!!
A= x3- 9x2+ 27x- 27 tại x=13, ta có:
A= 133- 9.132+ 27.13- 27
A= 133- 3.3.132+ 3.33.13- 33
A= (13- 3)3
A= 103
A= 1000
Vậy đa thức A tại x= 13 có kết quả bằng 1000
`A = x^3 - 9x^2 +27x - 27`
`->A = x^3 - 3 . x^2 . 3 + 3 . x . 3^2 -3^3`
`->A = (x-3)^3`
`->A = (13-3)^3`
`->A=10^3=10 000`
Vậy `A=10 000`
\(x^2y^4+2xy^2+1=\left(xy^2\right)^2+2.xy^2.1+1^2=\left(xy^2+1\right)^2\)
Áp dụng hằng đẳng thức thứ nhất: \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(2xy^2+x^2y^4+1\)
\(=\left(xy^2\right)^2+2xy^2+1\)
\(=\left(xy^2+1\right)^2\)
252 - 152
= (25 - 15)(25 + 15)
= 10 . 40
= 400
2052 - 952
= (205 - 95)(205 + 95)
= 110 . 300
= 33 000
362 - 142
= (36 - 14)(36 + 14)
= 22 . 50
= 1 100
9502 - 8502
= (950 - 850)(950 + 850)
= 100 . 1 800
= 180 000
cảm ơn nhé