K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2023

Dựa vào các đồ thị ở Hình `1.12` ta có:

- Các thời điểm gia tốc của xe bằng `0` là `t={0,1 ; 0,3 ; 0,5} (s)`

- Các thời điểm gia tốc của xe cực đại là `t={0 ; 0,2 ; 0,4 ; 0,6} (s)`

Cách làm: dựa vào đồ thị ở hình `c`, ta chiếu các thời điểm ứng với trục `t` sang trục `a`.

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Trên đồ thị (v – t) Hình 3.2, tại thời điểm \(\dfrac{T}{4}\), \(\dfrac{3T}{4}\) độ dốc của đồ thị bằng 0 và tại thời điểm 0, \(\dfrac{T}{2}\), T độ dốc của đồ thị cực đại. Trên đồ thị (a - t) Hình 3.3 thì ngược lại.

25 tháng 3 2017

2 tháng 2 2019

QT
Quoc Tran Anh Le
Giáo viên
27 tháng 8 2023

1. Vật tại vị trí cân bằng có vmax = ωA = 20 cm/s

Khi vật có tốc độ bằng v = \(\omega.\sqrt{A^2-x^2}=10\left(\dfrac{cm}{s}\right)\)

Gia tốc của vật có độ lớn a = ω2x = \(40\sqrt{3}\) cm/s2

Từ đó A = 5 cm, ω = 4rad/s

2. Từ đồ thị ta thấy:

Biên độ A = 40 cm, chu kì T = 4s

a) Tốc độ của vật ở thời điểm t = 0s bằng v = 0 (cm/s) vì ở vị trí biên.

b) Tốc độ cực đại của vật là vmax = ωA = 20π (rad/s).

c) Gia tốc của vật tại thời điểm t = 1,0 s là a= ω2A=10π2 (rad/s) đạt giá trị lớn nhất vì tại vị trí cân bằng.

HQ
Hà Quang Minh
Giáo viên
27 tháng 8 2023

Tại E, H thước không có độ dốc, thước song song với trục Ox nên vận tốc tại E, H bằng 0.

Tại C thước có độ dốc lớn hơn so với tại E, H nên vận tốc tại C lớn hơn so với tại E, H.

25 tháng 4 2019

8 tháng 7 2018

HQ
Hà Quang Minh
Giáo viên
5 tháng 11 2023

Biên độ dao động: A = 0,44 cm

Tốc độ cực đại: vmax = 4,2 cm/s

Gia tốc cực đại: amax = 40 cm/s2

Chu kì của gia tốc của vật: T = 0,66 s.

Tốc độ góc: \(\omega  = \frac{{2\pi }}{T} = \frac{{100}}{{33}}\pi (rad/s)\)

a) Tại thời điểm ban đầu vật đi từ biên âm tiến về VTCB nên pha ban đầu φ= π(rad)

Khi đó, phương trình li độ có dạng:

x = Acos(ωt+φ0) = 0,44cos(\(\frac{{100\pi }}{{33}}\)t+π) (cm)

Phương trình vận tốc có dạng:

v = ωAcos(ωt+φ0+\(\frac{\pi }{2}\)) = 4,2cos(\(\frac{{100\pi }}{{33}}\)t+\(\frac{{3\pi }}{2}\)) (cm/s)

Phương trình gia tốc có dạng:

a = −ω2Acos(ωt+φ0) = −40cos(\(\frac{{100\pi }}{{33}}\)t+π) (cm/s2)

b)

Từ đồ thị có thể thấy:

t= 0,33s: x=0,44 cm; v=0 cm/s; a=-40 cm/s2

t= 0,495s: x=0 cm; v=-4,2 cm/s; a=0 cm/s2

t= 0,66s: x=-0,44 cm; v=0 cm/s; a=40 cm/s2

c) Nghiệm lại với các phương trình.

- Tại thời điểm t = 0,5 s

x = 0,44cos(\(\frac{{100\pi }}{{33}}\).0,5+π) = −0,02 (cm)

v =4,2cos(\(\frac{{100\pi }}{{33}}\).0,5+3π2) = −4,19 (cm/s)

a =−40cos(\(\frac{{100\pi }}{{33}}\).0,5+π) = 1,9 (cm/s2)

- Tại thời điểm t = 0,75 s

x = 0,44cos(\(\frac{{100\pi }}{{33}}\).0,75+π) = −0,29 (cm)

v = 4,2cos(\(\frac{{100\pi }}{{33}}\).0,75+\(\frac{{3\pi }}{2}\)) = 3,17 (cm/s)

a = −40cos(\(\frac{{100\pi }}{{33}}\).0,75+π) = 26,2 (cm/s2)

- Tại thời điểm t = 1 s

x = 0,44cos(\(\frac{{100\pi }}{{33}}\).1+π) = 0,438 (cm)

v = 4,2cos(\(\frac{{100\pi }}{{33}}\).1+3π2) = −0,4 (cm/s)

a = −40cos(\(\frac{{100\pi }}{{33}}\).1+π) = −39,8 (cm/s2)

22 tháng 11 2017